期刊文献+

基于联合多样性密度的汉语方言辨识 被引量:6

Chinese dialect identification based on combination diverse Density
下载PDF
导出
摘要 为了解决汉语方言模型设计较为单一的问题,提高方言辨识的效率,提出了一种基于联合多样性密度的汉语方言辨识方法。多样性密度算法是多示例学习中的一种经典算法,联合多样性密度算法是对其的改进应用。该方法首先将方言进行预分类为多个小类,然后将各小类方言进行多示例包生成,并通过期望最大多样性密度算法进行多示例学习,得到的多个多样性密度点作为方言的多示例模型,最后提出平均最近距离算法进行模式分类。该方法在训练模型时得到的方言模型更为全面、完整,在模式分类时考虑了未知包中每个示例的影响,提高了辨识系统的效率。 In order to solve the problem that designing Chinese dialect model singly and improve the performance of dialect identification, an approach of Chinese dialect identification based on combination diverse density is presented. Diverse density is a classical algorithm of multi-instance learning. Combination diverse density is a improved application algorithm based on it. The new method firstly pre-classify one kind dialect into several little classes. Secondly generate every little class into multi-instance bags. Then use EM-DD for multi-instance learning and get various diverse density points as a dialect model. Finally put forward average recent distance algorithm for classification. The method can get a complete and full model in training part, and consider the influence of every instance in unseen bags in pattern classification part. Finally the efficiency of the system is improved.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第10期161-166,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61040053) 江苏省普通高校研究生科研创新计划项目(No.CXZZ12_0977)
关键词 汉语方言辨识 多示例学习 多样性密度 K近邻 平均最近距离 Chinese dialect identification multi-instance learning diverse density k-means average recent distance
  • 相关文献

参考文献16

  • 1Ditterich T G,Lathrop R H,Lozano P T.Solving the multiple-instance problem with axisparallel rectangles[J].Artificial Intelligence,1997,89(1/2):31-71.
  • 2Maron O,Ratan A L.A framework for multiple-instance learning[C]//NIPS,Cambridge,USA,1998:570-576.
  • 3Zhang Q,Goldman S A.EM-DD:an improved multipleinstance learning technique[C]//NIPS,Cambridge,USA,2001:1073-1080.
  • 4Ramon J,Raedt L D.Multi-instance neural networks[C]//ICML,Stanford,USA,2000:53-60.
  • 5Zhou Z H,Zhang M L.Neural networks for multi-instance learning[C]//ICIIT,Beijing,2002:455-459.
  • 6Maron O,Ratan A L.Multiple-instance learning for natural scene classification[C]//ICML,Madison,USA,1998:341-349.
  • 7Ruffo G.Learning single and multiple instance decision tree for computer security applications[D].Torino:University of Turin,2000.
  • 8Andrew S,Hofman T,Tsochantaridis I.Multiple instance learning with generalized support vector machines[C]//AAAI/IAAI,Edmonton,Canada,2002:943-944.
  • 9Huang X,Chen S C,Shy M L,et al.User concept pattern discovery using relevance feedback and multiple instance learning for content-based image retrieval[C]//MDM/KDD2002 Workshop,Edmomton,Canada,2002:100-108.
  • 10Yang C,Lozano P T.Image database retrieval with multipleinstance learning techniques[C]//ICDE,San Diego,USA,2000:233-243.

二级参考文献36

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3戴宏斌,张敏灵,周志华.一种基于多示例学习的图像检索方法[J].模式识别与人工智能,2006,19(2):179-185. 被引量:9
  • 4Dietterich T G, Lathrop R H, Lozano-Perez T. Sol-ring the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997,89 (1/2): 31-71.
  • 5Maron O. Learning from ambiguity [D]. Cam- bridge, US: Massachusetts Institute of Technology, 1998.
  • 6Zhang Q, Goldman S A. EM-DD..an improved mul- tiple-instance learning technique[C]// Advances in Neural Information Processing System, Cambridge, 2001.
  • 7Zhou Z H, Zhang M L. Solving multi-instance prob- lems with classifier ensemble based on constructive clustering[J]. Knowledge and Information Systems, 2007,11(2):155-170.
  • 8Zhou Z H,Zhang M L. Ensembles of multi-instance learning[C] // Proceedings of the 14th European Conference on Machine Learning,Cavtat-Dubrovnik, Croatia, 2003.
  • 9Chiang J Y, Cheng S R. Multiple-instance content- based image retrieval employing isometric embedded similarity measure[J]. Pattern Recognition, 2009,42 (1) :158-166.
  • 10Yang C, Lozano-Perez T. Image Database Retrieval with Multiple-lnstance Learning Techniques. In: Proc of the 16th International Conference on Data Engineering. San Diego, USA,2000, 233-243

共引文献13

同被引文献56

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部