期刊文献+

无线城市数据中的社团发现方法 被引量:3

Community detection in wireless city data
下载PDF
导出
摘要 为了在缺失社交关系的无线城市接入日志中挖掘频繁共现的社团结构。提出了一种基于无向有权图的社团发现方法:团搜索(Clique Search)。该算法将日志数据映射到图空间,通过挖掘其中的团来对潜在的社团关系进行挖掘。相较于传统算法,该算法显著减小了运算时间复杂度与空间复杂度。实验结果表明,随着输入数据集规模的增长,该算法仍然能够在常数级别时间内完成计算。算法中的参数δ对结果社团中成员的联系紧密度影响比较明显,使用不同的δ值可以满足不同应用的需求。 In order to identify frequent co-occurrence communities in non-relational login log generated by Wireless City.Propose an undirected weighted graph-based community detection method called"Clique Search". The algorithm maps the log data to graph, mining potential social communities by searching for the cliques in the graph. Compared to the traditional algorithm, this algorithm significantly reduces the computation time complexity and space complexity. The experimental results show that with the increase in the size of the input data set, the algorithm is still able to accomplish the computation in a constant level of time. Algorithm parameter δ influences the community tightness of the results obviously,by using different δ can meet the needs of different applications.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第10期259-264,270,共7页 Computer Engineering and Applications
基金 江苏省科技支撑计划(No.BE2011173)
关键词 无线城市 社团发现 MAC地址 APRIORI算法 团搜索 wireless city community detection Mac address Apriori clique search
  • 相关文献

参考文献13

  • 1Givan M,Newman M E J.Community structure in social and biological networks[J].P Natl Acad Sci USA,2002,99(12):7821-7826.
  • 2Newman M E J.Fast algorithm for detecting community structure in networks[J].Phys Rev E,2004,69(6).
  • 3Clauset A.Finding local community structure in networks[J].Phys Rev E,2005,72(2).
  • 4Duch J,Arenas A.Community detection in complex networks[J].Proc Natl Acad Sci USA,2006,103(23):8577-8582.
  • 5邹永贵,万建斌,夏英.基于路网的LBSN用户移动轨迹聚类挖掘方法[J].计算机应用研究,2013,30(8):2410-2414. 被引量:9
  • 6袁书寒,陈维斌,傅顺开.位置服务社交网络用户行为相似性分析[J].计算机应用,2012,32(2):322-325. 被引量:27
  • 7胡立,陈健,沈书毅,等.基于用户轨迹聚类分析的推荐算法研究[J].计算机研究与发展,2012,49(S1):250-256.
  • 8Ying J J C,Lu E H C,Kuo W N,et al.Urban point-of-Interest recommendation by mining user check-in behaviors[C]//Proceedings of the ACM SIGKDD International Workshop on Urban Computing,2012.
  • 9Brown C,Nicosia V,Scellato S,et al.The importance of being placefriends:discovering location-focused online communities[C]//WOSN’12,Helsinki,Finland,2012.
  • 10Agrawal R,Srikant R.Fast algorithms for mining association rules[C]//Proceeding of the 20th International Conference on Very Large Databases,Santiago,Chile,1994.

二级参考文献29

  • 1BENEVENUTO F,RODRIGUES T,CHA M,et al.Characterizing user behavior in online social networks[C]// Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement.New York:ACM,2009:49-62.
  • 2SCELLATO S,MASCOLO C.Measuring user activity on an online location-based social network[C]// Proceedings of Third International Workshop on Network Science for Communication Networks.Piscataway:IEEE,2011:918-923.
  • 3CHENG Z,CAVERLEE J,LEE K,et al.Exploring millions of footprints in location sharing services[C]// ICWSM 11:Fifth International AAAI Conference on Weblogs and Social Media.Barcelona,Spain:AAAI,2011:282.
  • 4NOULAS A,SCELLATO S,MASCOLO C,et al.An empirical study nf geographic user activity patterns in foursquare[C]// ICWSM 11:Fifth International AAAI Conference on Weblogs and Social Media.Barcelona,Spain:AAAI,2011:570-573.
  • 5CHO E,MYERS S A,LESKOVEC J.Friendship and mobility:User movement in location-based social networks[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2011:1082-1090.
  • 6HUNG C-C,CHANG C-W,PENG W-C.Mining trajectory profiles for discovering user communities[C]//proceedings of the 2009 International Workshop on Location Based Social Networks, New York:ACM,2009:1-8.
  • 7LI Q,ZHENG Y,XIE X,et al.Mining user similarity based on location history[C]// Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.New York:ACM,2008:1-10.
  • 8LEE M-J,CHUNG C-W.h user similarity calculation based on the location for social network services[C]// DASFAA'11:Proceedings of the 16th International Conference on Database Systems for Advanced Applications,LNCS 6587.Berlin:Springer-Verlag,2011,1:38-52.
  • 9ESTER M,KRIEGEL H P,SANDER J,et al.A density based algorithm for discovering clusters in large spatial databass with noise[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland: AAAI, 1996:226-231.
  • 10LEE R,SUMIYA K.Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection[C]// Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks.New York,ACM,2010:1-10.

共引文献33

同被引文献17

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部