期刊文献+

奇异值分解降噪结合局部特征尺度分解的轴承故障诊断 被引量:7

Bearing Fault Diagnosis based on Singular Value Decomposition Denoising and Local Characteristic-scale Decomposition
原文传递
导出
摘要 局部特征尺度分解(Local characteristic-scale decomposition,LCD)是一种崭新的自适应时频分析方法,在旋转机械故障诊断领域得到了初步的应用。在研究噪声对LCD影响的基础上,提出了一种奇异值分解(Singular value decomposition,SVD)降噪与LCD相结合的轴承故障诊断方法。首先对信号进行相空间重构,然后运用SVD降噪,对降噪信号进行LCD,将得到的内禀尺度分量进行包络谱分析提取故障特征。通过数据仿真与轴承内圈故障数据分析,验证了该方法的有效性。 As a new self- adaptive time- frequency analysis method,the local characteristic- scale decomposition( LCD) is proposed lately and applied to mechanical fault diagnosis. The influence of noise to LCD is studied and a new fault diagnosis based on singular value decomposition( SVD) de- noising and local characteristic- scale decomposition is proposed. Firstly,the phase space reconstruction of original vibration signal is carried out,and then,the noise is effectively eliminated by using singular value decomposition. The LCD of the de- noising signal is carried out and some intrinsic scale components( ISC) are acquired,then the envelope spectrum analysis on the ISCs is carried out and the fault feature is extracted. Through the analysis of the simulation data and the bearing fault data,the effectiveness of this method is verified.
出处 《机械传动》 CSCD 北大核心 2016年第5期128-133,共6页 Journal of Mechanical Transmission
基金 国家部委预研基金(9140A27020214JB1446)
关键词 局部特征尺度分解 奇异值分解 相空间重构 轴承故障诊断 Local characteristic-scale decomposition Singular value decomposition Phase space reconstruction Bearing fault diagnosis
  • 相关文献

参考文献12

二级参考文献85

共引文献325

同被引文献63

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部