期刊文献+

基于人眼注视非穿戴自然人机交互 被引量:3

Gazing Based Non-Wearable and Natural Human-Computer Interaction
下载PDF
导出
摘要 提出了一种基于人眼注视的非穿戴自然人机交互新方法。基于人体生物结构特征,采用主动形状模型确定人眼轮廓特征点,并根据HSV色彩空间构建人眼特征直方图,采用粒子滤波法,对人眼目标跟踪与定位。基于最大三角化划分人眼轮廓特征,构建人眼几何模型,通过图像帧间均值滤波,确定人眼注视交互目标,实现非穿戴的人机交互,满足用户交互的灵活性、舒适性和自由性等要求。通过实验对比,验证了该方法有效、可行。 A novel non-wearable and natural human-computer interaction(HCI)method has been proposed based on eye gazing. According to human being biological structure characteristics ,an active shape model is employed to locate some feature points in the eye profile. A histogram of eye feature has been built according to the HSV color space. A particle filter method has been adopted to track and locate the eye. A 2D eye geometric model is constructed based on the maximal triangulation of the eye contour features. A temporal median filter strategy has been developed to determine a stable gazing interactive target. Non-wearable and natural HCI modal is realized in which the user can move flexibly both in comfort and freedom interactive ways. Experiment results indicate that the developed approach is efficient and can be used to natural non-wearable HCI.
出处 《电子器件》 CAS 北大核心 2016年第2期253-257,共5页 Chinese Journal of Electron Devices
基金 国家自然科学基金项目(11176016 60872117) 高等学校博士学科点专项科研基金项目(20123108110014)
关键词 人机交互 非穿戴 三角化划分 人眼几何模型 人眼注视 human-computer interaction non-wearable triangulation eye geometric model eye gazing
  • 相关文献

参考文献18

  • 1管业鹏.基于多模态视觉特征的自然人机交互[J].电子学报,2013,41(11):2223-2229. 被引量:6
  • 2Mehrabian A. Communication without Words [J]. Psychology To- day, 1968,2(4) :53-56.
  • 3Ma Y, Konishi Y, Kinoshita K, et al. Sparse Bayesian Regression for Head Pose Estimation [C]//Proceedings of International Con- ference on Pattern Recognition, 2006,3 : 507-510.
  • 4Zhang Z, Hu Y, Liu M, et al. Head Pose Estimation in Seminar Room Using Multi View Face Detectors [C]//Proceedings of Inter- national Conference on Multimodal Technologies for Perception of Humans, 2007 : 299-304.
  • 5Heo J, Savvides M. Generic 3D Face Pose Estimation Using Fa- cial Shapes [C]//Proceedings of International Conference on Bio- metrics, 2011 : 1-8.
  • 6Yang J L, Liang W, Jia Y D. Face Pose Estimation with Combined 2D and 3D HOG Features [C]//Proceedings of IEEE Conference on Pattern Recognition, 2012 : 2492-2495.
  • 7Beymer D J. Face Recognition under Varying Pose [C]//Proceed- ings of IEEE Conference on Computer Vision and Pattern Recog- nition, 1994:756-761.
  • 8Cheng L P,Hsiao F I,. Liu Y T,et al. iRotate:Automatic Screen Rota- tion Based on Face Orientation[C]//Proceedings of SIGCHI Confer- ence on Human Factors in Computing Systems,2012:2203 -2210.
  • 9Ratsamee P, Mac Y, Ohara K, et al. Social Navigation Model Based on Human Intention Analysis Using Face Orientation [C ]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013 : 1682-1687.
  • 10Dong N, Zeng X, Guan L. Face Orientation Detection Using Histo- gram of Optimized Local Binary pattern [J].. The Era of Interac- tive Media, 2013 : 77-87.

二级参考文献36

  • 1Ritchie Argue, Matthew Boardman, Jonathan Doyle, Glenn Hickey. Bui/ding a Low-Cost to Track Eye Movement[EB/ OL]. http://servl. ist. psu. edu: 8080/viewdoc/summary? doi = 10.1.1.92.2962,2004.
  • 2Zhiwei Zhu, Kikuo Fujimura, Qiang Ji. Real-time detection and tracking under various light condifions[J]. Computer Vision and Image Understanding, 2002,98( 1 ) : 79 - 85.
  • 3Frank Wallhoff, Markus Ablabmeier, Gerhard Rigoll. Multimodal face detection, head orientation and eye gaze tracking [A]. International Conference on Mulfisensor Fusion and Integration for Intelligent Systems [ C ]. Heidelberg, Germany: 2006.13 - 18.
  • 4Takehiko Ohno, Naoki Mukawa. A free-head, simple calibration, gaze tracking systemthat enables gaze-based interaction [A]. Prceedings of the 2004 Symposium on Eye Tracking Research & Applications [C]. San Antonio, Texas: ACM Press, 2004.115 - 122.
  • 5Manjula A Iyer, Morgan M Harris, et al. A performance comparison of piecewise linear estimation methods[A]. Proceedings of the 2008 Spring Simulation Multiconference [C], Ottawa, Canada: ACM Press,2008.273- 278.
  • 6Boyd J E, Meloche J, et al. Statistical tracking in video traffic surveillance[A]. The Proceedings of the 17th IEEE Intemational Conference on Computer Vision [C]. Kerkyra, Greece: IEEE, 1999. 163 - 168.
  • 7Haritaoglu I, Harwood D, et al. Active outdoor surveillance [A].Proceedings International Conference on Image Analysis and Processing[C]. NW Washington, DC USA: IEEE Computer Society, 1999. 1096.
  • 8A H Sadka,D Crookes.Multimodal biometric human recognition for perceptual human-computer interaction[J].IEEE Transactions on Systems,Man,and Cybernetics-Part C:Applications and reviews,2010,40(6):676-681.
  • 9Z Cernekova,N Nikolaidis,I Pitas.Single camera pointing gesture recognition using spatial features and support vector machines[A].Proceedings of European Signal Processing Conference[C].Poznan,Poland:European Signal Processing Conference,2007.130-134.
  • 10L M Reeves,J Lai,J A Larson,et al.Guidelines for multimodal user interface design[J].Communications of the ACM,2004,47(1):57-59.

共引文献7

同被引文献37

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部