期刊文献+

基于约简数据集的网络入侵检测技术研究

Research on Network Intrusion Detection Technology based on Reduced Data Set
下载PDF
导出
摘要 网络入侵检测技术是网络安全的重要内容,而对于数据挖掘中的样本约简,主要是从缩减数据集中的样本数量上来实现数据挖掘成本的有效降低。本文将从基于类中心的分层样本约简方法入手,探讨数据集中相对于其他类别的数据子集指标,并从原始数据集中选取样本子集,实现对入侵检测模型的构建。 The network intrusion detection technology is an important part of network security,and for the sample reduction in data mining,it is mainly from the reduction in the number of data samples to achieve effective cost reduction in data mining. This paper,starting from the layered sample reduction method based on classified center,explores on other classes of data index,and from the original data selected from the sample subset,realizes the construction of intrusion detection model.
出处 《漯河职业技术学院学报》 2016年第2期38-40,共3页 Journal of Luohe Vocational Technical College
关键词 数据挖掘 网络入侵 数据集 约简算法 入侵模型 data mining network intrusion data set reduction algorithm intrusion model
  • 相关文献

参考文献4

  • 1Mai J, Chuah C N, Sridharan A, etal. Is sampted data suf- ficient for anomaly detection [ C ]. IN : Proceedings of the 6th ACM SIGCOMM conference on Internet measure- ment. ACM, 2006:165 - 176.
  • 2Androulidakis G, Chatzigiannakis V, Papavassiliou S. Net- work anomaly detection and classification via opportunistic sampling[ J]. TEEE Network,2009,23( 1 ) :6 - 12.
  • 3王庆荣,郑丽英.基于混合比例方法抽样用于入侵检测[J].兰州交通大学学报,2011,30(1):10-12. 被引量:1
  • 4李敏,卡米力.木依丁.特征选择方法与算法的研究[J].计算机技术与发展,2013,23(12):16-21. 被引量:23

二级参考文献21

  • 1Gustavo E A, 13atista P A, Ronaldo C, et al. A study of the behavior of several methods for balancing machine learning training Data[J]. SGKDD Explorations, 2004, 6(1):20-29.
  • 2Crislianini N,Shawe-TaylorJ.支持向量机导论[M].北京:机械工业出版社,2005.
  • 3Rehan A, Stephen K, Nathalie J. Applying support vector machines to imbalanced datasets[C]//ECMI. 2004, LNAI, 3204 : 39-50.
  • 4Chawla N V, Japkowicz N, Kotcz A. Special issue on learning from imbalanced data sets[J]. Applied Mathematics and Computation, 2004,6( 1 ) : 1-6.
  • 5Cem K, Hulya, Cingi R Estimators for the population variance in simple and stratified random sampling[J]. Applied Mathematics and Computation,2006(4) : 1047- 1059.
  • 6Azizi A. Efficient IRIS recognition through improvement of fea-ture extraction and subset selection [ J ]. International journalof computer science and information security ,2009,2( 1) :72-73.
  • 7Yu Lei, Liu Huan. Efficient feature selection via analysis ofrelevance and redundancy [ J ]. Machine learning research,2004,5(1):1207-1220.
  • 8Hall M A,Smith L A. Feature subset selection: A correlationbased filter approach [ C ] //Proc of international conference onneural information processing. [ s. 1. ] : [ s. n. ] ,1997 :2-4.
  • 9Hsu W H. Genetic wrappers for feature selection in decisiontree induction and variable ordering in Bayesian networkstructure learning [ J ]. Information sciences,2004, 163 ( 1):105-120.
  • 10Karegowda A G, Manjunath A S, Jayaram M A. Comparativestudy of attribute selection using gain ratio and correlationbased feature selection [ J ]. International journal of informationtechnology and knowledge management, 2010, 2(2): 271 -274.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部