期刊文献+

算子的分解理论及其应用

Decomposition theory of operator and its application
下载PDF
导出
摘要 在Almansi理论的基础上,对求解数学弹性力学的通解过程中出现的算子分解问题进行了进一步的研究。通过引入几个函数参量推导得出了3条引理,并对Almansi理论进行了推广,得到了适用范围更广的分解方式,并给出了证明。应用该理论对一个典型的算子形式进行了分解应用。相对于已有的算子分解理论,该理论的引入使包含时间项的复杂偏微分方程可以分解为多个简单的算子方程,较其他分解理论适用范围更广,实用性更强。 Based on the Almansi theory,the problems of operator decomposition which appears in the process of solving the general solution of mathematical elastic mechanics is studied in this paper. By introducing a few function parameters,three lemmas has been derived,and applied into the Almansi theory. Therefore a more extensively applicable decomposition way is got and proofed. The theory was applied to a typical form of operator on the application of decomposition. Compared with the existing theory,the complex partial differential equation which contains time item can be decomposed into several simple operator equations by the introduction of this theory. The new decomposition theory has more extensively applicable and practical.
出处 《辽宁科技大学学报》 CAS 2016年第2期137-140,共4页 Journal of University of Science and Technology Liaoning
基金 国家自然科学基金项目(11172319)
关键词 数学弹性力学 通解 算子的分解 Almansi理论 mathematical elasticity general solution operator decomposition Almansi theory
  • 相关文献

参考文献4

二级参考文献24

  • 1柳志千,黄端山.Poisson方程Dirichlet问题的解在角点附近的性质[J].韶关学院学报,2005,26(3):25-31. 被引量:1
  • 2邹道勤,梁剑,丁皓江.横观各向同性弹性力学问题的通解[J].浙江大学学报(自然科学版),1994,28(3):273-282. 被引量:7
  • 3黄金水,朱灼文.随机Poisson方程Dirichlet大地边值问题的随机积分解[J].武汉大学学报(信息科学版),2005,30(10):900-904. 被引量:1
  • 4Sneddon IN, Lowengrub M. Crack Problems in the Classical Theory of Elasticity. New York: John Wiley and Sons,1969.
  • 5Chen WQ, Shioya T. Fundamental solution for a pennyshaped crack in a piezoelectric medium. J Mech Phys Solids, 1999, 47:1459-4475.
  • 6Chen WQ, Shioya T, Ding HJ. The elasto-electric field for a rigid conical punch on a transversely isotropic piezoelectric half-space. J Appl Mech, 1999, 66:764-771.
  • 7Chen WQ. On the application of potential theory in piezoelasticity. J Appl Mech, 1999, 66:808-810.
  • 8Fabrikant VI. Mixed Boundary Value Problem of Potential Theory and Their Applications in Engineering. The Netherlands: Kluwer Academic Publishers, 1991.
  • 9Fabrikant VI. Applications of Potential Theory in Mechanics: A Selection of New Results. The Netherlands: Kluwer Academic Publishers, 1989.
  • 10Podil'chuk YN, Dobrivecher VV. Thermal-stress state of a transversally isotropic body with a rigid elliptical inclusion.Int Appl Mech, 1996, 32:8-14.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部