期刊文献+

A-调和方程与微分形式关系

Relationship between A-harmonic equation and differential form
下载PDF
导出
摘要 A-调和方程和微分形式在电磁学与流体力学中占有重要的地位,研究他们之间的关系尤为重要.介绍了2类加权微分形式,并证明了微分形式与A-调和方程之间的关系. A-Harmonic equation and differential forms are very important in electromagnetic and fluid mechanics,and their relationship is particularly important.This paper introduces two types of weighted differential forms,and proves the relationship between differential form and A-harmonic equation.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2016年第3期229-231,共3页 Journal of Hebei University(Natural Science Edition)
基金 保定市科学技术研究与发展计划指导项目(12ZS005 12ZS006 14ZN001) 河北省高等学校科学技术研究青年基金项目(QN2016243)
关键词 A-调和方程 黎曼流形 微分形式 算子 A-harmonic equation Riemannian manifold differential form operator
  • 相关文献

参考文献7

二级参考文献49

  • 1TU TianLiang Deptartment of Mathematics and Informatics, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, China.Jackson type theorems on complex curves[J].Science China Mathematics,2009,52(3):493-506. 被引量:3
  • 2[2]HEINONEN J, KILPELAINEN T, MARTIO O. Nonlinear Potential Theory of Second Order Degenerate Elliptic Partial Differential Equations [M]. Oxford University Press, 1993.
  • 3[3]IWANIEC T, SBORDONE C. Weak minima of variational integrals [J]. J. Reine. Angew. Math. ,1994, 454: 143-161.
  • 4[4]MEYERS N, ELCRAT G. Some results on regularity for solutions of nonlinear elliptic systems and quasi-regular functions [J]. Duke Math. J. , 1975, 42: 121-136.
  • 5[5]GIAQUINTA M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems [M].Ann. Math. Stud. , 105, Princeton Univ. Press, 1983.
  • 6[6]IWANIEC T, MIGLIACCIO L, NANIA L. et al. Integrability and removability results for quasiregular mappings in high dimensons [J]. Math. Scand, 1994, 75: 263-279.
  • 7[7]LI Gong-bao, MARTIO O. Stability in obstacle problems [J]. Math. Scand, 1994, 75: 87-100.
  • 8[8]LI Gong-bao, MARTIO O. Stability of solutions of varying degenerate elliptic equations [J]. Indiana Univ. Math. J. , 1998, 47: 873-891.
  • 9[1]LI Gong-bao, MARTIO O. Local and global integrability of gradients in obstacle problems [J]. Ann.Acad. Sci. Fenn. Ser. A. I. Math., 1994, 19: 25-34.
  • 10BOJARSKI B,IWANIEC T.Analytical foundations of the theory of quasiconformal mappings in Rn[J].Ann Acad Sci Fenn Ser A I Math,1983,8:257-324.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部