摘要
The Red River Shear Zone (RRSZ), which extends from eastern Tibet to the South China Sea, plays a central role in the hypothesis that strike\|slip extrusion of Indochina accommodated a significant portion of Indo\|Asian convergence. The massifs of the RRSZ, the only known mid\|crustal section exposed through a transform plate boundary, contain high\|grade metamorphic rocks that are believed to have been plastically deformed in a left\|lateral sense during the mid\|Tertiary. While the history of diachronous transtension along the RRSZ was previously obtained for temperatures below the brittle\|ductile transition from argon thermochronometry, the precise timing of high temperature deformation and the magnitude of strain have not been directly determined. This is a significant limitation to testing the extrusion model as magnetic anomalies from the South China Sea, interpreted to be a pull apart basin at the SE termination of the RRSZ, specifically predict that slip occurred between 35~17Ma at a rate of 3~5cm/a.
The Red River Shear Zone (RRSZ), which extends from eastern Tibet to the South China Sea, plays a central role in the hypothesis that strike\|slip extrusion of Indochina accommodated a significant portion of Indo\|Asian convergence. The massifs of the RRSZ, the only known mid\|crustal section exposed through a transform plate boundary, contain high\|grade metamorphic rocks that are believed to have been plastically deformed in a left\|lateral sense during the mid\|Tertiary. While the history of diachronous transtension along the RRSZ was previously obtained for temperatures below the brittle\|ductile transition from argon thermochronometry, the precise timing of high temperature deformation and the magnitude of strain have not been directly determined. This is a significant limitation to testing the extrusion model as magnetic anomalies from the South China Sea, interpreted to be a pull apart basin at the SE termination of the RRSZ, specifically predict that slip occurred between 35~17Ma at a rate of 3~5cm/a.
作者
Lisa Gilley 1, T. Mark Harrison 1,F.J. Ryerson 2,P.H. Leloup 3,Wang Jianghai 4(1 Department of Earth and Space Sciences & IGPP, UCLA, Los Angeles, CA, 90095\|1567, USA.
2 Institute of Geophysics & Planetary Physics, Lawrence Livermore N
出处
《地学前缘》
EI
CAS
CSCD
2000年第S1期275-275,共1页
Earth Science Frontiers