摘要
Three global tectonic systems that formed since the middle Jurassic (160Ma ago)are outlined based on the global map of the Cenozoic and Mesozoic tectonics edited by Ma Zongjin et al.(1996).They are the circum\|Pacific tectonic system,the mid\|ocean ridge tectonic system and the intra\|continental tectonic system of the north hemisphere.The map shows that about 80% of the total length of the continental orogens are concentrate on the north hemisphere of the earth,of which a latitudinal mountain\|plateau chain occur within a zone between north latitude 20°and 50°.Seismic and volcanic activities demonstrate that the intracontinental tectonic system on the north hemisphere is still active.Whilst distribution of the continental deep\|focus earthquakes and almost ultra high\|pressure rock found so far over the World,that are assumed both related to recent or previous deep subduction of continent,along with this zone.The latitudinal mountain\|plateau chain is subdivided into four active tectonic region of Qinghai—Xizang(Tibet),Iranian,eastern mediterranean and North American,both characterized by an individual similar mountain\|plateau\|basin structure with major active boundaries or controlling faults (Fig.1).These active regions are all close to primary dynamic boundaries of continent\|continent collision.Solution of source mechanisms shows that regional tectonic stress field in these regions are dominated by a nearly NS or NNE—SSW direction compression corresponding to a local plate motions and a global compressive zone.Correlation between the formation of the continental latitudinal mountain\|plateau chain on north hemisphere and the oceanic plate tectonics is discussed using the information of the “Map of Magnetic Lineations of the World’s Ocean Basins (Cande et al.,1989)”and the Cenozoic and Mesozoic tectonic evolution in the continents.Total 49 accretion units formed during 6 accretion stages of the ocean spreading in three chief oceans (the Pacific,the India and the Atlantic)si nce 160Ma ago,are subdivided.The distinguished oceanic accretion tectonics in combination with the geometrical and kinematics data of adjust continental f ragments allowed outline of the development of the continental latitudinal tecto nic zone of north hemisphere.Whilst,two global asymmetrical geodynamic systems of north\|south an east\|west direction,that may be composed of meridional conve ction,latitudinal convection and inertial flow resulting from the variation of the Earth’s rotational velocity,are used to discuss on the two global geodynamic systems in which the intracontinental latitudinal tectonic zone developed.
Three global tectonic systems that formed since the middle Jurassic (160Ma ago)are outlined based on the global map of the Cenozoic and Mesozoic tectonics edited by Ma Zongjin et al.(1996).They are the circum\|Pacific tectonic system,the mid\|ocean ridge tectonic system and the intra\|continental tectonic system of the north hemisphere.The map shows that about 80% of the total length of the continental orogens are concentrate on the north hemisphere of the earth,of which a latitudinal mountain\|plateau chain occur within a zone between north latitude 20°and 50°.Seismic and volcanic activities demonstrate that the intracontinental tectonic system on the north hemisphere is still active.Whilst distribution of the continental deep\|focus earthquakes and almost ultra high\|pressure rock found so far over the World,that are assumed both related to recent or previous deep subduction of continent,along with this zone.The latitudinal mountain\|plateau chain is subdivided into four active tectonic region of Qinghai—Xizang(Tibet),Iranian,eastern mediterranean and North American,both characterized by an individual similar mountain\|plateau\|basin structure with major active boundaries or controlling faults (Fig.1).These active regions are all close to primary dynamic boundaries of continent\|continent collision.Solution of source mechanisms shows that regional tectonic stress field in these regions are dominated by a nearly NS or NNE—SSW direction compression corresponding to a local plate motions and a global compressive zone.Correlation between the formation of the continental latitudinal mountain\|plateau chain on north hemisphere and the oceanic plate tectonics is discussed using the information of the “Map of Magnetic Lineations of the World’s Ocean Basins (Cande et al.,1989)”and the Cenozoic and Mesozoic tectonic evolution in the continents.Total 49 accretion units formed during 6 accretion stages of the ocean spreading in three chief oceans (the Pacific,the India and the Atlantic)si nce 160Ma ago,are subdivided.The distinguished oceanic accretion tectonics in combination with the geometrical and kinematics data of adjust continental f ragments allowed outline of the development of the continental latitudinal tecto nic zone of north hemisphere.Whilst,two global asymmetrical geodynamic systems of north\|south an east\|west direction,that may be composed of meridional conve ction,latitudinal convection and inertial flow resulting from the variation of the Earth’s rotational velocity,are used to discuss on the two global geodynamic systems in which the intracontinental latitudinal tectonic zone developed.
出处
《地学前缘》
EI
CAS
CSCD
2000年第S1期344-345,共2页
Earth Science Frontiers