期刊文献+

基于改进虚拟机整合算法的虚拟资源管理工具 被引量:2

Virtualization Resource Management Tool Based on Improved Virtual Machine Consolidation Algorithm
下载PDF
导出
摘要 提出了一种基于分段迭代相关性整合(SICC)的虚拟机整合与放置策略,并将它作为云资源管理工具的核心结构。SICC算法整合了时间序列分析、线性相关性分析和传统的FFD算法,并基于虚拟机的最小资源利用率建立了一套新的虚拟机动态资源整合理论。数值仿真结果表明,在虚拟机整合过程中,新的基于SICC的架构在使用不同的初始动态条件时,以虚拟机为粒度的物理资源利用率性能提升3%~20%;在以服务器为粒度的物理资源利用率性能提升超过5%。 In the paper, we propose a virtual machine (VM) consolidation and placement strategy, named segmentation iteration correlation combination (SICC). The SICC algorithm integrates several algorithms, such as time series analysis, linear correlation analysis and traditional first fit decreasing (FFD). A new dynamic resource consolidation theory is then established based on the virtual machine minimum resource utilization parameter. The simulation results indicate that the novel SICC framework can improve the physical resource utilization by 3% to 20% in the VM granularity and by up 5% in the server granularity.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第3期355-360,480,共7页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61173149)
关键词 动态资源整合 FFD算法 线性相关性分析 虚拟机 dynamic resource consolidation FFD algorithm linear correlation analysis virtual machine
  • 相关文献

参考文献12

  • 1GONG W, CHEN Z, YAN J, et al. An optimal VM resource allocation for near-client-datacenter fbr multimedia cloud[C] //Ubiquitous and Future Network (ICUFN). Shanghai: IEEE, 2014: 249-255.
  • 2PAPAGIANNI C, LEIVADEAS A, PAPAVASSILIOUS S, et al. On the optimal allocation of virtual resources in cloud computing networks[J]. IEEE Transactions on Computers, 2013, 62(6): 1060-1071.
  • 3LIU K, PENG J, LIU W, et al. Dynamic resource reservation via broker federation in cloud service: a fine-grained heuristic-based approach[C]//IEEE Global Communications Conference (GLOBECOM). [S.1.]: IEEE, 2014: 2338-2343.
  • 4BELOGLAZOV A, ABAWAJY J, BUYYA R. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing[J]. Future Generation Computer Systems, 2012, 28(5): 755-768.
  • 5BUYYA R, RANJAN R, CALHEIROS R N. Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services, algorithms and architectures for parallel processing[J]. Computer Science, 2010, 6081: 13-31.
  • 6MENG X, ISCI C, KEPHART J, et al. Efficient resource provisioning in compute clouds via VM multiplexing[C]// The 7th International Conference on Autonomic Computing (ICAC). New York, USA: ACM, 2010:11-20.
  • 7VERMA A, DASGUPTA G, NAYAK T K, et al. Server workload analysis for power minimization using consolidation[C]//USENIX Annual Technical Conference. [S.1.]: USENIX Assocoation Berkeley, 2009: 28-28.
  • 8APTE R, HU L, SCHWAN K, et al. Discovering dependencies between virtual machines using cpu utilization[C]//The 2nd Conference On Hot Topics in Cloud Computing (HotCloud). California, USA: USENIX Assocoation Berkeley, 2010:17-23.
  • 9WAN J, PAN F, JIANG C. Placement strategy of virtual machines based on workload characteristics[C]//IEEE 26th International Parallel and Distributed Processing Symposium Workshops and PhD Forum (IPDPSW). [S.1.]: IEEE, 2012: 1827.
  • 10DINDA P A. The statistical properties of host load[C]// Fourth Workshop on Languages, Compilers, and Run-Time Systems for Scalable Computers. Berlin: Springer Heidelberg, 1998: 1-23.

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部