期刊文献+

代数动力学研究含时激光辐射场驱动下的单分子(英文)

Algebraic Dynamics Study a Single Molecule Driven by a Time Dependent Laser Radiation Field
下载PDF
导出
摘要 该文研究了含时激光辐射场驱动下的单分子系统的动力学性质。基于系统的su(1,1)?h(3)代数结构(h(3)满足Heisenberg代数)和代数动力学方法,不仅获得了系统的解析解,而且还研究了系统的非绝热能级和几何相位。最后研究了非绝热能级和几何相位与激光辐射场频率的函数关系,展示了系统存在的共振现象以及分子共振吸收时激光辐射场频率和分子振动频率之间的漂移现象。 The dynamical properties of a single molecule driven by a time dependent laser radiation field are researched. Based on the su(1,1) 0)h(3) (h(3)is Heisenberg algebra) dynamical symmetry structure of the system, the exact solutions of the system is obtained by using the algebraic dynamics method. The shift between the frequency Ω of the laser radiation field and the molecule vibration frequency w under resonance phenomenon is studied.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第3期365-370,共6页 Journal of University of Electronic Science and Technology of China
基金 supported by UOG-UESTC Joint school educational innovation program of university of electronic science and technology of China (GL2014001)
关键词 非绝热能级 代数动力学 几何相位 共振 adiabatic energy levels algebraic dynamics geometric phase resonance
  • 相关文献

参考文献25

  • 1BARUT A, BOHM A, NE'EMAN Y. Dynamical groups and spectrum generating algebras[M]. Singapore: World Scientific, 1988: 3-69.
  • 2BIRMAN J L, SOLOMON A I. Spectrum generating algebras in condensed matter physics[M]. Singapore: World Scientific, 1988: 317-339.
  • 3BIRMAN J L, SOLOMON A I. Dynamical group so(6) and coexistence: Superconductivity and charge-density waves[J]. Physical Review Letter, 1982(49): 230-233.
  • 4SOLOMON A I. Group theory of superfluidity[J]. Journal of Mathematical Physics, 1971(12): 390-393.
  • 5SOLOMON A I, BIRMAN J L. Dynamical group model of the CDW state[J]. Physical Review Letter, 1982, 88A: 413-416.
  • 6WYBOURNE B G. Classical groups for physicists[M]. New York: Wiley, 1974.
  • 7WANG S J. The study of the theory of the man-made quantum systems and algebraic dynamics[J]. Progress in Physics, 1999(19): 331-370.
  • 8PAUL W. Electromagnetic traps for charged and neutral particles[J]. Review of Modern Physics, 1990(62): 531-540.
  • 9WANG S J, ZUO W, WEIGUNY A, et al. Exact solution of the linear nonautonomous system with the SU(1,1)dynamical group[J]. Physics Letter A, 1994(196): 7-12.
  • 10WANG S J. Nonadiabatic Berry's phase for a spin particle in a rotating magnetic field[J]. Physical Review A, 1990(42): 5107-5110.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部