期刊文献+

基于传感器数据的人类活动识别研究 被引量:3

Review of human activity recognition using sensor data
下载PDF
导出
摘要 给出了活动识别的定义,阐述了活动识别对智能健康监护和老年人护理的重要意义,并给出了基于传感器的活动识别系统的构成,详细描述了系统的传感器数据采集、数据预处理及机器学习等技术的研究进展,介绍了人类活动识别实验取得的结果。最后指出,老年人活动识别、多人活动识别以及实时活动识别是未来活动识别的发展方向;活动识别研究已成为普适计算一个重要和富有挑战性的研究课题,构建用于处理复杂的现实情况和环境的可靠的活动识别系统仍然是一个挑战,需要多学科交叉研究。 The definition of activity recognition is given, and the significallce of activity recognition to intelligent health- care and elderly healthcare is interpreted. The main parts of an activity recognition system based on sensors are de- scribed, and the corresponding techniques of sensor data sampling, data preprocessing and machine learning, as well as their developments, are reviewed in detail. The review points out that elderly activity recognition, collective activity recognition and real-time activity recognition are the possible directions of future activity recognition re- search, the research on activity recognition is an important and challenging research topic in pervasive computing, and building reliable activity recognition systems to deal with complex real-life situations and environments is still a challenge, which requires a multi-disciplinary effort.
出处 《高技术通讯》 CAS CSCD 北大核心 2016年第2期207-214,共8页 Chinese High Technology Letters
基金 国家自然科学基金(61273019 61473339) 河北自然科学基金(F2013203368 F2014501046) 中国博士后科学基金(2014M561202) 河北省博士后专项(B2014010005) 首批"河北省青年拔尖人才"(2013-17)资助项目
关键词 活动识别 智能健康监护 多传感器 数据融合 移动感知 activity recognition, intelligent healthcare, multi-sensor, data fusion, mobile sensing
  • 相关文献

参考文献2

二级参考文献42

  • 1CHENG Hong, LlU Zicheng, ZHAO Yang, et al. Real World Activity Summary for Senior Home Monitoring[C]// Proceedings of IEEE Internat- ional Conference on Multimedia and Expo (ICME): July 11-15, 2011. Barcelona, Spain, 2011: 1-4.
  • 2SHOHON J, FITZGIBBON A, COOK M, et al. Real-Time Human Pose Recognition in Parts from Single Depth Images[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR'11): June 21-23, 2011. Colorado Springs, USA, 2011: 1297-1304.
  • 3LlU Zicheng, Human Activity Recognition with 2D and 3D Cameras[J]. Progress in Pattern Rec- ognition, Image Analysis, and Applications, 2012, 7441: 37.
  • 4NI Bingbing, WANG Gang, MOULIN P. RGBD- HuDaAct: A Colour-Depth Video Database for Human Daily Activity Recognition[C]// Proc- eedings of IEEE International Conference on Computer Vision Workshops (ICCV Workshops): November 6-13, 2011. Barcelona, Spain, 2011: 1147-1153.
  • 5LI Wanqing, ZHANG Zhengyou, LlU Zicheng. Action Recognition Based on a Bag of 3D Points[C]/ / Proceedings of IEEE International Conference on Computer Vision Workshops (CVPR Workshops): June 13-18, 2010. San Fra- ncisco, USA, 2010.
  • 6ZHAO Yang, LlU Zicheng, YANG Lu, et al. Com- bing RGB and Depth Map Features for Human Activity Recognition[C]// Proceedings of Asia- Pacific Signal and Information Processing Ass- ociation Annual Summit and Conference (APSIPA ASC): December 3-6, 2012. Hollywood, USA, 2012: 1-4.
  • 7SUNG J, PONCE C, SELMAN B, et al. Human Activity Detection from RGBD Images[C]// Pro- ceedings of AAAI Workshop on Plan, Activity, and Intent Recognition: August 7-8,2011. San Francisco, USA, 2011.
  • 8ZHANG Hao, PARKER L E. 4-Dimensional Local Spatio- Temporal Features for Human Activity Recognition[C]// Proceedings of IEEE Interna- tional Conference on Intelligent Robotics and Systems (IROS): September 25-30, 2011. San Francisco, USA, 2011: 2044-2049.
  • 9WANG Jiang, LlU Zicheng, WU Ying, et al. Mining Actionlet Ensemble for Action Recog- nition with Depth Cameras[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR): June 16-21, 2012. Providence, RI, USA, 2012: 1290-1297.
  • 10WANG Jiang, LlU Zicheng, CHOROWSKI J, et al. Robust 3D Action Recognition with Ran- dom Occupancy Patterns[C]// Proceedings of the 12th European Conference on Computer Vision - Volume Part II (ECCV'12): October 7-13,2012. Florence, Italy, 2012: 872-885.

共引文献4

同被引文献15

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部