期刊文献+

求解最优潮流问题的混合线性锥规划法 被引量:3

Solution of Optimal Power Flow Problems by Mixed Cone Linear Programming
下载PDF
导出
摘要 单一线性锥规划方法求解最优潮流(optimal power flow,OPF)问题时,锥变量仅局限于某个单一锥集合,使得锥规划模型的构造缺乏灵活性,建模难度较大。为此,基于混合线性锥规划(mixed cone linear programming,MCLP)方法,提出了求解OPF问题的3种MCLP模型—MCLP-OPF。该模型采用不同的锥变量来构建原始OPF问题的锥松弛模型,锥变量可同时取自半正定锥、二阶锥和非负多面体锥。引入MCLP-OPF问题的可行域"厚度",并根据该"厚度"大小选择直接内点法或齐次自对偶(homogeneous self-dual,HSD)内点法求解。从C-703节点等6个测试系统的仿真结果可以看到,相较于半定规划法,MCLP-OPF提高了锥规划方法的建模效率、求解效率和存储效率,更适于求解大规模电力系统问题。 The way to solve the optimal power flow(OPF) problem by a single cone linear prog+ramming,whose variables are limited to a single cone collection,make the structure of the conic programming model short of flexibility and difficult to model.Therefore,based on mixed cone linear programming(MCLP),three MCLP models to solve the OPF problem(MCLP-OPF) were presented.The cone relaxation model of the original OPF problem is built through different cone variables,which can be taken from semi-definite cones,second-order cones and nonnegative polyhedral cone simultaneously.By introducing "thickness" of the feasible region,the MCLP-OPF models are solved via interior point method(IPM) or homogeneous self-dual(HSD) IPM according to the magnitude of the "thickness".Simulation results of 6 test systems such as C-703 bus power system show that,compared with the semi-definite programming,MCLP-OPF improves the modeling efficiency,solving efficiency and storage efficiency of conic programming,and is more suitable for solving large-scale power system problems.
出处 《中国电机工程学报》 EI CSCD 北大核心 2016年第10期2638-2647,共10页 Proceedings of the CSEE
基金 国家自然科学基金项目(51277034)~~
关键词 最优潮流 混合锥 线性锥规划 内点法 齐次自对偶 optimal power flow mixed cone linear conic programming interior point method homogeneous self-dual
  • 相关文献

参考文献4

二级参考文献86

  • 1郭三刚,管晓宏,翟桥柱.具有爬升约束机组组合的充分必要条件[J].中国电机工程学报,2005,25(24):14-19. 被引量:33
  • 2孙力勇,张焰,蒋传文.基于矩阵实数编码遗传算法求解大规模机组组合问题[J].中国电机工程学报,2006,26(2):82-87. 被引量:64
  • 3Akturk M, Atamturk A, Gurel reformulation for machine-job S. A strong conic quadratic assignment with controllable processing times[J]. Operations Research Letters, 2009, 37(3) 187-191.
  • 4Gunluk O, Linderoth J. Perspective relaxation of mixed integer nonlinear programs with indicator variables[J]. Lecture Notes in Computer Science, 2008(5035):1-16.
  • 5Aardal K, Nemhauser G, Weismantel R. Handbooks in operations research and management science, 12: discrete optimization [M]. Amsterdam: North-Holland, 2005: 69-121.
  • 6Wosely L. Integer programming[M]. New York: John Wiley and Sons, 1998: 113-160.
  • 7Juste K, Kita H, Tanaka E, et al. An evolutionary programming solution to the unit commitment problem[J]. IEEE Trans. on Power Systems, 1999, 14(4): 1452-1459.
  • 8Balci H, Valenzuela J. Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method[J]. International Journal of Applied Mathematics and Computer Sciences, 2004, 14(3): 411-421.
  • 9Kazarlis S, Bakirtzis A, Petridis V. A genetic algorithm solution to the unit commitment problem[J]. IEEE Trans. on Power Systems, 1996, 11(1): 83-92.
  • 10Senjyu T, Yamashio H, Uezato K, et al. A unit commitment problem by using genetic algorithm based on unit characteristic classification [C]. IEEE-PES Winter Meeting, New York, USA, 2002.

共引文献237

同被引文献55

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部