期刊文献+

不同压力环境下竖直平板表面自然对流散热实验 被引量:5

Experiment on surface natural convection heat transfer of vertical plate under different pressures
原文传递
导出
摘要 飞行器从地面上升到太空的过程中所经历的大幅度环境参数变化,会导致飞行器及机载设备出现"超热"、"过冷"和"热分层"等现象。为得到不同环境压力下的关键参数——自然对流换热系数,本文搭建了一个能提供不同气压和环境温度的封闭试验舱,对在不同压力环境(0.000 1,0.01,0.1,0.2,0.5,1,10,50kPa和常压)下几种固定加热量(75,150,300 W/m^2)的竖直平板散热进行了实验研究,通过对辐射散热和对流散热的分析比较,获取不用工况下气体的对流换热系数。结果表明:对流换热系数在绝对气压小于1kPa时非常小,可以视作为0;在绝对气压大于1kPa时,对流换热系数随压力的升高呈2次方增加;通过对环境物理参数的无因次化处理,得到的准则式方程可用于1-100kPa的环境压力。 When rising from the ground to space,aircraft will experience substantial changes in environmental parameters,which leads to the emergence of"super-hot","super-cold"and"thermal stratification"phenomenon of aircraft and airborne equipment.The objective of the present study is to obtain the key parameter—free convection heat transfer coefficient under different environmental pressures.In this study,experiments are carried out under different pressure conditions(0.000 1,0.01,0.1,0.2,0.5,1,10,50 kPa and atmospheric pressure)and different constant heat input(75,150,300 W/m^2)to measure the heat transfer of vertical plate.Then convection heat transfer coefficient can be obtained under different conditions by comparing heat loss between radiation and convection.The results indicate that:convection heat transfer coefficient is pretty low when absolute pressure is less than 1kPa,which can be regarded as zero;when the absolute atmosphere is higher than 1kPa,square relation is found between increasing convection heat transfer coefficient and increasing pressure;by processing environmental parameters with dimensionless method,the obtained criterion equation can be used between 1kPa and 100 kPa.
出处 《航空学报》 EI CAS CSCD 北大核心 2016年第5期1506-1511,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(51506009) 可靠性与环境工程技术重点实验室开放基金(KHZS20143001)~~
关键词 低气压 竖直平板 自然对流 辐射散热 无因次 low pressure vertical plate natural convection radiation dimensionless
  • 相关文献

参考文献4

二级参考文献9

  • 1[1]Colozza A,Dolce J L.High-Altitude.Long-endurance airships for coastal surveillance.NASA/TM-2005-213427,2005
  • 2[2]Colozza A.Initial Feasibility Assessment of a High Altitude Long Endurance Airship.NASA/CR-2003-212724,2003
  • 3[3]Harada K,Eguchi K,Sano M,et al.Experimental Study of Thermal Modeling for Stratospheric Platform Airships.AIAA 2003-6833
  • 4[4]Khoury G A,Gillett J D.Airship Technology[M].First edition.United Kingdom:Cambridge University Press,1999:22-33
  • 5王伟志,方贤德,苏向辉.平流层飞艇热力学特性初步分析[C].中国空间技术研究院近空间领域文集(一) 北京:中国空间技术研究院 2006.
  • 6方贤德.高空气球飘飞特性的数学建模研究[C].浮空器发展与应用学术交流会论文集,2005.
  • 7方贤德,李小建.平流层飞艇热平衡[D].NH-39,2006.
  • 8Kreith F.Kreider J.Principles of Solar Engineering[M].Chap.3.Hemisphere Publishing Corp.1978.
  • 9Morris A.Scientific Ballooning Handbook[M].NCAR TN/1A-99,National Center for Atmospheric Research,Boulder CO.1975.

共引文献104

同被引文献22

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部