期刊文献+

面向再入目标跟踪的估计与辨识联合优化算法 被引量:8

Joint optimization algorithm of estimation and identification for reentry target tracking
原文传递
导出
摘要 准确的弹道系数辨识和精确的目标状态估计是再入目标高精度跟踪与高可靠识别的关键。一方面,状态估计的误差会造成模型参数(弹道系数)的辨识风险;另一方面,模型参数的辨识偏差又会导致模型失配从而降低目标状态的估计精度。因此,需要实现再入目标的状态估计和参数辨识的联合优化。针对再入目标弹道系数未知情形,提出了一种基于期望最大化(EM)框架并采用粒子滤波(PF)平滑器实现的PF-EM联合优化算法。在E步基于粒子平滑器得到目标状态的后验平滑估计,M步采用数值优化算法更新上一次迭代的弹道系数,通过E步和M步的不断迭代,以保证状态估计和弹道系数辨识的一致性。算法仿真对比表明:所提算法的状态估计和参数辨识精度均优于传统的状态增广算法。 Reliable identification of ballistic coefficient and accurate estimation of target state are important issues and coupled:the state estimation error may trigger identification risk while identification risk causes state estimation error due to modeling mismatch.Therefore,it is essential to estimate the target state and identify unknown model parameters jointly.In this paper,the joint optimization algorithm PF-EM is proposed for tracking a reentry target with unknown ballistic coefficient,which is realized by using particle filter(PF)smoother under the expectation-maximization(EM)iterative framework.In the E-step,the random particle sampling strategy is utilized to approximate the likelihood function to deal with the inherited nonlinearity.In the M-step,the numerical optimization algorithm is applied to update mass-to-drag ratio.In the simulation compared with the traditional algorithm which augments the state vector with the unknown parameter,the proposed algorithm shows the improvement in both state estimate and parameter identification.
出处 《航空学报》 EI CAS CSCD 北大核心 2016年第5期1634-1643,共10页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61135001 61374023 61374159) 航空科学基金(20125153)~~
关键词 目标跟踪 再入目标 弹道系数 期望最大化(EM) 联合优化 target tracking reentry target ballistic coefficient expectation-maximization(EM) joint optimization
  • 相关文献

参考文献2

二级参考文献23

  • 1金文彬,刘永祥,黎湘,任双桥.再入目标质阻比估计算法研究[J].国防科技大学学报,2004,26(5):46-51. 被引量:17
  • 2Wang H, Kirubarajan T, Bar-Shalom Y. Large scale air traffic surveillance using IMM estimators with assignment [J]. IEEE Transactions on Aerospace and Electronic Sys terns, 1999, 35(1): 255 -266.
  • 3Kirubarajan. T, Bar Shalom Y, Blair W D, et al. IMMP DAF for radar management and tracking benchmark with ECM [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1115-1134.
  • 4Yeom S W, Kirubarajan T, Bar Shalom Y. Track seg ment association, fine-step IMM and initialization with Doppler for improved track pert'ormance[J]. IEEE Trans actions on Aerospace and Electronic Systems, 2004, 40 (1) :293-309.
  • 5Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with applications to tracking and navigation[M]. New York: Wiley, 2001: 453-477.
  • 6Bar Shalom Y, Blair W D. Multitarget/multisensor track- ing: applications and advances[M]. Vol. III. Norwood, MA: Artech House, 2000:267- 295.
  • 7William J F. Interacting multiple model filter for tactical ballistic missile tracking[J]. IEEE Transactions on Aero- space and Electronic Systems, 2008, 44(2): 418- 426.
  • 8Benavoli A, Chisci L, Farina A. Tracking of a ballistic missile with a-prior information[J].IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1000- 1016.
  • 9Harlin W J, Cicci D A. Ballistic missile trajectory prediction using a state transition matrix[J]. Applied Mathe- matics and Computation, 2007, 188(2) :1832- 1847.
  • 10Rao B, Zhao Y L, Xiao S P, et al. Discrimination of exo- atmospheric active decoys using acceleration information [J]. IET Radar, Sonar and Navigation, 2010, 4(4):626 -638.

共引文献32

同被引文献56

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部