期刊文献+

通过体外代谢途径构建确定乳酸合成关键酶

Determination of key enzymes for lactate synthesis through in vitro metabolic pathway construction
下载PDF
导出
摘要 基于代谢控制分析理论提出了一种通过体外代谢途径构建和分析确定关键酶的方法并应用其确定乳酸高产菌株中的关键酶。首先获得高产菌株的粗酶液并测定葡萄糖到乳酸合成途径中各种蛋白的绝对浓度,进而通过向粗酶液中分别添加同等比例的各纯酶对途径进行扰动,并由扰动前后的途径通量变化计算出各酶的通量控制系数以确定关键酶。结果表明,该菌株乳酸合成途径中丙酮酸激酶和甘油醛-3-磷酸脱氢酶对途径通量影响最大,由此预测在该菌株基础上进一步过表达这两个酶对提高乳酸生成速率可能最为有效。 A method was presented for key enzyme determination through in vitro metabolic pathway analysis based on the metabolic control analysis theory and it was used to determine the key enzymes in lactate-producing strain. Firstly, crude enzyme extracts were obtained from the strain and the absolute protein concentrations for all enzymes in the pathway from glucose to pyruvate were measured. Then individual pure enzymes were added to the crude extract and the pathway flux changes were measured to calculate the flux control coefficients (FCCs) of the enzymes to determine the key enzymes. It was found that pyruvate kinase (PykA) and glyceraldehyde-3-phosphate dehydrogenase (GapA) had the largest effect on FCCs, and thus should be the gene overexpression targets for further improvement of lactate production.
出处 《中国酿造》 CAS 北大核心 2016年第5期144-148,共5页 China Brewing
基金 国家重点基础研究计划‘973计划’(Nos.2012CB725203) 国家高技术研究发展计划‘863计划’(No.2012AA022103) 天津市科技支撑计划重点项目(No.14ZCZDSY00060)
关键词 体外代谢途径构建 乳酸合成途径 代谢控制分析 关键酶 通量控制系数 in vitro metabolic pathway construction lactate synthesis pathway metabolic control analysis key enzyme flux control coefficient
  • 相关文献

参考文献19

  • 1胡永红,管琚,杨文革,汤天羽.发酵法生产D-乳酸的研究进展[J].食品与发酵工业,2007,33(12):99-103. 被引量:15
  • 2吴军华.生物质制备乳酸研究进展[J].中国酿造,2011,30(10):9-12. 被引量:3
  • 3王景川,庞广昌.乳酸代谢通量调控规律的研究[J].食品科学,2009,30(21):246-251. 被引量:2
  • 4VIJAYAKUMAR J, ARAVINDAN R, VIRUTHAGIRI T. Recent trends in the production, purification and application of lactic acid [J]. Chem Bioehem Eng Q, 2008, 22(2): 245-264.
  • 5DATSENKOK A, WANNER B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. P Nail Aead Sci USA, 2000, 97(12): 6640-6645.
  • 6ZHOU S D, CAUSEY T B, HASONA A, et al. Production of optically pured-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W31 lO[J]. Appl Environ Microbiol, 2003, 69(1): 399- 407.
  • 7BUNCH P K, JAN F M, LEE N, et al. The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coil[J]. Microbiology, 1997, 143(1): 187-195.
  • 8KIM B, KIM W J, KIM D I, et al. Application of genome-scale metabolic network model in metabolic engineering [J]. J Ind Microbiol Blot, 2014, 42(3): 339-348.
  • 9KING Z A, LLOYD C J, FEIST A M, et al. Next-generation genomescale models for metabolic engineering[J]. Curt Opin Biotechnol, 2015, 35: 23-29.
  • 10MCCLOSKEY D, PALSSON B, FEIST A M. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli[J]. Mol Syst Biol, 2013, 9(1): 661-666.

二级参考文献75

  • 1王宏伟,郭绍华,冯靓.L-乳酸发酵的研究进展[J].辽宁农业科学,2004(4):28-30. 被引量:9
  • 2吕九琢,徐亚贤.乳酸应用、生产及需求的现状与预测[J].北京石油化工学院学报,2004,12(2):32-38. 被引量:20
  • 3赵博,周帅,马翠卿,杨春玉,许平.乳杆菌Lactobacillus sp.lxp发酵高产L-乳酸研究[J].生物加工过程,2005,3(4):74-77. 被引量:6
  • 4李家鹏,庞广昌.从代谢调控的角度分析乳酸类食品的抗癌潜能和开发前景[J].食品科学,2006,27(11):613-617. 被引量:3
  • 5BAILEY J E. Towards a science of metabolic engineering [J]. Science, 1991, 252: 1668-1674.
  • 6PORRO D, BIANCHI M M, BRAMBILLA L, ctal. Rcplacemeat of a metabolic pathway for large-scale production of lactic acid from engineered yeasts[J]. Appl Environ Microbiol, 1999, 65:4211-4215.
  • 7BIANCHI M M, BRAMBILLA L, PROTANI F, et al. Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvatc utilization and transformed with the hctcrologous LDH gone Ⅲ. Appl Environ Microbiol, 2001, 67: 5621-5625.
  • 8NIKKILA K K, HUJANEN M, LEISOLA M, et al. Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)- lactic acid[J]. Appl Environ Microbiol, 2000, 669: 3835-3841.
  • 9NEVES A R, RAMOS A, COSTA H, et al. Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intraceUular metabolite pools determined by in vivo nuclear magnetic resonance[J]. Appl Environ Microbiol, 2002, 68: 6332-6342.
  • 10SOLEM C, KOEBMANN B J, JENSEN P R. Glyceraldebyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363[J]. J Bacteriol, 2003, 185:1564-1571.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部