期刊文献+

基于季节性马尔科夫模型的郑州市降雨指数衍生品定价 被引量:2

Valuing Rainfall Index Derivatives of Zhengzhou Based on Seasonal Markov Model
下载PDF
导出
摘要 未来特定时间区间内降雨指数的微小差别,会对降雨指数衍生品的理论价格产生很大的影响。根据郑州市的降雨过程具有明显的季节性特征的特点,提出了季节性马尔科夫模型,并用此模型对其降雨频率进行建模。然后,用Gamma分布模拟郑州市不同季度的日降雨量的分布。最后,对郑州市未来一年的日降雨量进行随机模拟,并运用蒙特卡洛方法,模拟计算了基于郑州市第二季度降雨累积指数的期货合约的到期收益值。计算结果表明,本文提出的季节性马尔科夫模型可以更好地模拟郑州市降雨过程的统计特征。 During the process of pricing rainfall index derivatives,the minute difference existed in the predicted value of rainfall index in the future specific temporal interval,will significantly influence the theory price of rainfall index derivatives. In the article,we proposed the seasonal Markov model for the obvious seasonal characteristics of rainfall process in Zhengzhou,the rainfall frequency was modeling with this model. Then,the distribution of the daily rainfall in the different season in Zhengzhou was simulated with Gamma.Finally,the daily rainfall of the future year in Zhengzhou was randomly simulated,the yield-to-maturity value of the futures contracts based on the accumulated rainfall index of the second quarter in Zhengzhou was simulated and calculated. The calculation results show that the seasonal Markov model can preferably simulate the statistical characteristics of the rainfall process of Zhengzhou City.
出处 《华北水利水电大学学报(自然科学版)》 2016年第2期33-36,共4页 Journal of North China University of Water Resources and Electric Power:Natural Science Edition
基金 河南省科技厅基础与前沿研究(142300410175)
关键词 天气衍生品 季节性马尔科夫模型 累积降雨指数 蒙特卡洛模拟 weather derivatives seasonal Markov model rainfall index Monte-Carlo simulation
  • 相关文献

参考文献9

  • 1王明亮,何建敏,曹杰.基于气温指数的我国天气衍生品定价研究[J].数理统计与管理,2015,34(2):217-227. 被引量:9
  • 2孙保敬,李世平.天气指数衍生品及其定价研究[J].统计与决策,2015,31(5):154-156. 被引量:3
  • 3Li A, Cao M,Wei J Z. Precipitation modeling and contract valuation : a frontier in weather derivatives [ J ]. Journal of Alternative Investments,2007,7 ( 2 ) : 15 - 21.
  • 4Djehiehe B,Alaton P,Stillberger D. On modeling and pricing weather derivatives[ J]. Applied Mathematical Finance ,2002,9 (1) :1 -20.
  • 5Little M A, Mcsharry P E, Taylor J W. Generalized linear models for site-specific density forecasting of U. K. daily rainfall [ J ]. Monthly Weather Review, 2008, 137 ( 3 ) : 1029 - 1045.
  • 6Stowasser M. Modelling rain risk: a multi-order Markov chain model approach [ J ]. Journal of Risk Finance, 2011,13 ( 1 ) : 45 - 60.
  • 7Ramirez M C V,Velho [4 F D C, Ferreira N J. Artificial neural network teehnique for rainfall forecasting applied to the Sao Paulo region[J].Journal of Hydrology, 2005,301 (1) :146 - 162.
  • 8Masala G. Rainfall derivatives pricing with underlying semi- Markov model for precipitation occurrences[J]. Stochastic Environmental Research & Risk Assessment ,2014,28 (3) : 717 - 727.
  • 9Alexandridis A K, Zapranis A D. The Weather Derivatives Market[M]. New York : Springer,2013:241 - 270.

二级参考文献20

  • 1刘国光.天气预测与天气衍生产品定价研究[J].预测,2006,25(6):28-33. 被引量:24
  • 2Jewson S, Brix A, Ziehmann C. Meteorological, Statistical, Financial and Mathematical Foundations[M]. Cambridge,UK: Cambridge Univer- sity Press, 2005.
  • 3Hull J C. Options, Futures, and Other Derivatives (Sth Edition [M]. London: Pearson Education,2012.
  • 4[J].芝加哥商品交易所,http://www.cmegroup.com/trading/weather/(2013/07/18).
  • 5Dischel B.At last:A model for weather risk[J].Energy and Power Risk Management,1998,11(3):20-21.
  • 6Alaton P,Djehiche B,Stillberger D.On modelling and pricing weather derivatives[J].Applied Mathematical Finance,2002,9(1):1-20.
  • 7Bhowan A.Temperature derivatives[D].University of the Wiwatersrand,2003.
  • 8Benth F E,Saltyte Benth J.The volatility of temperature and pricing of weather derivatives[J].Quantitative Finance,2007,7(5):553-561.
  • 9Zapranis A,Alexandridis A.Modelling the temperature time-dependent speed of mean reversion in the context of weather derivatives pricing[J].Applied Mathematical Finance,2008,15(4):355-386.
  • 10Zapranis A,Alexandridis A.Weather derivatives pricing:Modeling the seasonal residual variance of an Ornstein-Uhlenbeck temperature process with neural networks[J].Neurocomputing,2009,73(1):37-48.

共引文献9

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部