期刊文献+

硼氮富勒烯图环4-边割的刻画

Characterization of Cyclic 4-edge Cut of Boron-nitrogen Fullerene Graphs
下载PDF
导出
摘要 硼氮富勒烯图是3?连通、3?正则的平面图,且每个面要么是四边形,要么是六边形.本文刻画了有非平凡环4?边割C的硼氮富勒烯图G,即G有非平凡环4?边割,则G是一类管状图Rn,或G?C的一个分支是2个相邻的四边形,或G?C的一个分支是3个相邻的四边形(即第1个与第2个相邻,第2个与第3个相邻,但第1个与第3个不相邻). A boron-nitrogen fullerene graph is a 3-connected, 3-regular planar graph, and each face is square or hexagon. In this paper, we characterize boron-nitrogen fullerene graph G with non-trivial cyclical-4-edge cut C, that is, G has non-trivial cyelieal-4-edge cut, then G is a type of tubulous graph Pn, or a component of G-C is two adjacent squares, or a component of G-C is three adjacent squares (the first is adjacent to the second square, the second is adjacent the third square, but the first is not adjacent to the third square.)
作者 蒋晓艳
机构地区 惠州学院数学系
出处 《五邑大学学报(自然科学版)》 CAS 2016年第2期9-13,共5页 Journal of Wuyi University(Natural Science Edition)
基金 广东省普通高校青年创新人才项目(2015KQNCX152) 惠州学院博士启动基金(C5110208)
关键词 硼氮富勒烯图 环边连通度 环边割 boron-nitrogen fullerene graph cyclical-edge connectivity cyclical-edge cut
  • 相关文献

参考文献11

  • 1ZHU Hongyao, KLEIN D, SEITZ W, et al. B-N alternants: boron nitride cages and polymers [J]. Inorg Chem, 1995, 34: 1377-1383.
  • 2KOCHOL M. A cyclically 6-edge-connected snark of order 118 [J]. Discrete Math, 1996, 161 : 297-300.
  • 3LOU Dingjun, HOLTON D A. Lower bound of cyclic edge connectivity for n-extendability of regular graphs [J] Discrete Math, 1993, 112: 139-150.
  • 4NEDELA R, SKOVIERA M. Atoms of cyclic connectivity in cubic graphs [J]. Math Slovaca, 1995, 45: 481-499.
  • 5KUTNAR K, MARUSIC D. On cyclic edge-connectivity of fullerenes [J]. Discrete Appl Math, 2008, 156 1661-1669.
  • 6DOSLIC T. Cyclical edge-connectivity of fullerene graphs and (k,6)-cages [J]. J Math Chem, 2003, 33 103-111.
  • 7JIANG Xiaoyan, ZHANG Heping. On forcing matching number of boron-nitrogen fullerene graphs [J] Discrete Appl Math, 2001, 159: 1581-1593.
  • 8FOWLER P, HELNE T, MITCHELL D, et al. Boron-nitrogen analogues of fullerenes: the isolated-square rule [J]. J Chem Soc Faraday Trans, 1996, 92(12): 2197-2201.
  • 9LIN Chengde, TANG Peng. Kekule count in capped zigzag B-N nanotubes [J]. J Chem Inf Comput Sci, 2004, 44 13-20.
  • 10SHIU W C, LAM P C B, ZHANG Heping. Clar and sextet polynomials of buckminster-Fullerene [J]. J Mol Struct (Theochem), 2003, 622: 239-248.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部