摘要
硼氮富勒烯图是3?连通、3?正则的平面图,且每个面要么是四边形,要么是六边形.本文刻画了有非平凡环4?边割C的硼氮富勒烯图G,即G有非平凡环4?边割,则G是一类管状图Rn,或G?C的一个分支是2个相邻的四边形,或G?C的一个分支是3个相邻的四边形(即第1个与第2个相邻,第2个与第3个相邻,但第1个与第3个不相邻).
A boron-nitrogen fullerene graph is a 3-connected, 3-regular planar graph, and each face is square or hexagon. In this paper, we characterize boron-nitrogen fullerene graph G with non-trivial cyclical-4-edge cut C, that is, G has non-trivial cyelieal-4-edge cut, then G is a type of tubulous graph Pn, or a component of G-C is two adjacent squares, or a component of G-C is three adjacent squares (the first is adjacent to the second square, the second is adjacent the third square, but the first is not adjacent to the third square.)
出处
《五邑大学学报(自然科学版)》
CAS
2016年第2期9-13,共5页
Journal of Wuyi University(Natural Science Edition)
基金
广东省普通高校青年创新人才项目(2015KQNCX152)
惠州学院博士启动基金(C5110208)
关键词
硼氮富勒烯图
环边连通度
环边割
boron-nitrogen fullerene graph
cyclical-edge connectivity
cyclical-edge cut