期刊文献+

基于Cortex-M4的无人飞行器安防系统研究

Security System Based on Cortex-M4 of Unmanned Aerial Vehicles
下载PDF
导出
摘要 针对大型园区、厂区安防人工成本高,及时性差等问题,设计了无人飞行器安防系统.飞行器采用四旋翼结构,其控制系统以Cortex-M4为架构,通过获取惯性传感器数据,使用串级比例积分微分控制实现自平衡,并利用GPS与气压计获取自身位置、高度信息,使其按照预定路线自动巡逻.控制中心通过无线网络接收飞行器采集的视频,使用跟踪学习检测算法对视频数据进行分析,当锁定目标后,远程控制飞行器进行跟踪.经过试验,飞行器具有很好的悬停能力,能够按照预定轨迹飞行.跟踪算法能锁定动态目标,并对飞行器进行实时控制.结论表明无人器可以完成巡逻和跟踪任务,自动化程度高,节省人力. A security and protection system using unmanned aerial vehicles(UAV)was designed aiming at the high labor cost and poor promptness in protecting large industrial parks and factories. The UAV is a quadrotor with its control system based on Cortex-M4 architecture,and its self-balancing ability was realized by collecting data from the inertial sensor and applying cascade proportion integration differentiation control. The UAV can perform automatic patrol along planned routes by using a GPS device and barometer to obtain information on its location and height. The control center receives videos recorded by the UAV through wireless network and analyzes the video data using the tracking learning detection algorithm. Once locking a target,the center would command the UAV remotely to track it. It has been verified through experiments that the UAV has excellent hover performance and can fly along planned routes,and the tracking algorithm performs well in locking mobile targets and controlling the UAV in real time. Results indicate that the highly automated UAV is competent for the tasks of patrolling and tracking,and can economize on manpower.
出处 《武汉工程大学学报》 CAS 2016年第2期189-194,共6页 Journal of Wuhan Institute of Technology
基金 武汉工程大学研究生教育创新基金(CX2014034)
关键词 CORTEX-M4 无人飞行器 目标跟踪 安防系统 Cortex-M4 unmanned aerial vehicle target tracking security system
  • 相关文献

参考文献10

  • 1RITZ R, MULLER M W, HEHN M, et al. Cooperative quadrocopter ball throwing and catching [C]// Intelli- gent Robots & Systems. Vi|amoura: IEEE/RSJ Interna- tional Conference, 2012 : 4972-4978.
  • 2LUPASHIN S, SCHOLL1G A, HEHN M, et al. The lly- ing machine arena as of 2010[C]// Robotics and Auto- mation. Shanghai: IEEE International Conference, 2011 : 2970-2971.
  • 3易先军,周敏,谢亚奇.四旋翼飞行器控制系统的设计与实现[J].武汉工程大学学报,2014,36(11):59-62. 被引量:9
  • 4王晓初,卢琛.四旋翼姿态解算算法的对比与研究[J].制造业自动化,2015,37(2):120-122. 被引量:7
  • 5HEHN M, RITZ R, ANDREA R. Performance bench- marking of quadrotor systems using time-optimal control [J~. Autonomous robots, 2012, 33(1-2) :69-88.
  • 6应时彦,朱小挺,汤顺.智能家居无线网络通讯协议[J].计算机系统应用,2011,20(6):117-121. 被引量:3
  • 7周鑫,钱秋朦,叶永强,王从庆.改进后的TLD视频目标跟踪方法[J].中国图象图形学报,2013,18(9):1115-1123. 被引量:47
  • 8KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking learning detection [J]. IEEE transactions on pattern analysis & machine intelligence, 2011, 34 (7) : 1409-1422.
  • 9申浩,李书晓,申意萍,朱承飞,常红星.航拍视频帧间快速配准算法[J].航空学报,2013,34(6):1405-1413. 被引量:13
  • 10GRABNER H, MATAS J, GOOL L V, et al. Tracking the invisible: learning where the object might be[C]// Computer Vision & Pattern Recognition. San Francisco : IEEE Conference, 2010: 1285-1292.

二级参考文献46

  • 1李俊,李运堂.四旋翼飞行器的动力学建模及PID控制[J].辽宁工程技术大学学报(自然科学版),2012,31(1):114-117. 被引量:159
  • 2马跃坤,应时彦,肖林荣.基于nRF24LE1芯片的一对多无线数据传输的实现[J].射频世界,2009(3):31-34. 被引量:7
  • 3许东,安锦文.一种基于光流拟和的航拍视频图像全局运动估算方法[J].航空学报,2006,27(1):94-97. 被引量:8
  • 4Zitova B, Flusser J. Image registration methods: a survey. Image and Vision Computing, 2003, 21(11) : 977-1000.
  • 5Brown M, Lowe D. Automatie panoramic image stitching using invariant features. International Journal of Computer Vision, 2007, 74(1): 59-73.
  • 6Battiato S, Bruna A R, Puglisi G. A robust block-based im- age/video registration approach for mobile imaging devices. IEEE Transactions on Multimedia, 2010, 12(7): 622-635.
  • 7Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(1) : 91-II0.
  • 8Steedly D, Pal C, Szeliski R. Efficiently registering video into panoramic mosaic. Proceedings of the 10th IEEE Inter- national Conference on Computer Vision, 2005: 1300-1307.
  • 9Bay H, Tuytelaars T, Gool L V. Surf: speeded up robust features. Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: 2006: 404-417.
  • 10Rublee E, Rabaud V, Konolige K, et at. Orb: an efficient alternative to sift or surf. Proceedings of the 13th IEEE In- ternational Conference on Computer Vision, 201 1 : 2564- 2571.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部