期刊文献+

三角形及五边形的Schwarz导数单叶性内径

The inner radius of univalence of triangles and pentagons
原文传递
导出
摘要 利用共形映射的Schwarz-Christoffel公式和复合函数的Schwarz导数公式,改进对多边形单叶性内径估值的Leila Miller-Van Wieren方法,使得对奇数边形的单叶性内径可以估值,得到了三角形的单叶性内径,并给出了五边形单叶性内径的估值模型. Using Schwarz-Christoffel formula and Schwarzian derivative formula about composite function,the Leila Miller-Van Wieren's method for estimating numerical about the inner radius of univalence is improved,and the inner radius of univalence of odd polygons is studied.This paper also gets the inner radius of univalency of triangles,and gives out a calculation method for pentagons.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2016年第1期9-12,17,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11226169) 河南省自然科学基金资助项目(142300410352)
关键词 单叶性内径 SCHWARZ导数 MOBIUS变换 Nehari圆 三角形 the inner radius of univalence Schwarzian derivative Mobius transformation Nehari disk triangle
  • 相关文献

参考文献6

二级参考文献48

  • 1CHENJIXIU],WEIHANBAI.SOME GEOMETRIC PROPERTIES ON A MODEL OF UNIVERSAL TEICHMLLER SPACES[J].Chinese Annals of Mathematics,Series B,1997,18(3):309-314. 被引量:12
  • 2WANG ZHE.THE DISTANCE BETWEEN DIFFERENT COMPONENTS OF THE UNIVERSAL TEICHMULLER SPACE[J].Chinese Annals of Mathematics,Series B,2005,26(4):537-542. 被引量:8
  • 3程涛,陈纪修.区域的对数导数单叶性内径[J].中国科学(A辑),2007,37(4):504-512. 被引量:9
  • 4[1]Leila Miller-Van Wieren Univalence criteria for classes of rectanglesand equiangularhexagon [J],Ann. Acad. Sci. Fenn. Math.,22(1997),407--424
  • 5[2]David Calvis The inner radius of univalence of normal circular trianglesand regular polygons [J],Complex Varibles,(1985),295--304
  • 6[3]Lehtinen, M. On the inner radius of univalency for noncircular domains[J],Ann. Acad. Sci. Fenn. Ser., AI Math.,5(1980),45--47
  • 7[4]Lehto Remarks on Nehari's theorem about the Schwarzian derivativeand schlicht functions [J], J. Analyse Math., 26(1979), 180--190
  • 8[5]Ahlfors, L. V. Complex analysis [M], Second Ediction, McGraw-Hill, New York,1966
  • 9Leila Miller-Van Wieren.Univalence criteria for classes of rectangles and equiangular hexagons[J].Ann Acad Sci Fenn Math,1997,22:407-424.
  • 10Nehari Z.The Schwarzian derivative and Schlicht functions[J].Bull Amer Math Soc,1949,55:545-551.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部