期刊文献+

磁性纳米材料的控制合成及介观特性研究进展 被引量:1

Progress of the Research on Controllable Synthesis and Mesoscopic Properties for Magnetic Nanomaterials
下载PDF
导出
摘要 由于纳米材料具有不同于宏观块材的特性,诸如量子尺寸效应、小尺寸效应等,越来越多的科学家致力于纳米材料的合成和介观特性的研究,推广其在现实生产生活中的应用。磁性纳米材料,如铁、钴、镍等,具有独特的磁学和催化等介观特性,近年来得到了广泛关注。发展高度可控且温和、简便的合成方法,构筑具有优异特性的新型纳米结构,实现对目标材料物理、化学性质的剪裁,已经发展成为无机纳米材料合成的重要发展方向。目前,磁性纳米材料的合成方法取得了广泛的研究,可以有效实现磁性纳米材料的可控合成及组装。通过对材料的微结构调控可以有效控制材料的尺寸、形貌、成分及表界面性质,从而实现对磁性纳米材料的磁学、催化等介观性质的优化。 Nanomaterials with small size and high specific surface area have many unique properties because of the small size effect and quantum size effect. As a result, nanomaterials have been widely investigated to develop their novel applica- tions in daily life. Magnetic nanomaterials, for example, iron, nickel and cobalt, have attracted much more attention be- cause of their outstanding magnetic, catalytic and electrochemical properties, which may bring extensive use in high densi- ty magnetic recording, sensors, catalysts and electrode materials. At present, the synthesis of inorganic nanomaterials mainly focuses on developing flexible, mild and simple methods, fabricating novel nanostructures with excellent qualities and tailoring the physical and chemical properties of objects. Motivated by the applied belief, a lot of methods have been developed for the synthesis of magnetic nanomaterials. These methods can effectively achieve the controllable preparation for the magnetic nanomaterials with typical structures, thus optimizing the magnetic and catalytic properties due to effec- tively controlled size, morphology and composition and the interface of the materials.
出处 《中国材料进展》 CAS CSCD 北大核心 2016年第4期292-301,291,共10页 Materials China
基金 国家自然科学基金(51371015 51331002) 北京市自然科学基金(2142018) 中央高校基本科研业务费(FRF-BR-15-009B)资助项目
关键词 磁性纳米材料 合成 组装 介观特性 magnetic nanomaterials synthesis self-assemble mesoscopic properties
  • 相关文献

参考文献70

  • 1Gallagher F A, Kettunen M I, Day S E, et al. Nature [ J], 2008, 453(7197): 940-U73.
  • 2Hao R, Xing R J, Xu Z C, et al. Adv Mater[J] , 2010, 22 (25) : 2 729-2 742.
  • 3Thomas C R, Ferris D P, Lee J H, et al. JAm Chem Soc[J] , 2010, 132(31) : 10 623-10 625.
  • 4Narayanan K B, Sakthivel N. Adv Colloid Interfac [ J ] , 2011, 169(2) : 59-79.
  • 5Wei S Y, Wang Q, Zhu J H, et al. Nanoscale[J] , 2011, 3 (11): 4474-4502.
  • 6Gao J H, Gu H W, Xu B. Accounts Chem Res[ J] , 2009, 42 (8) : 1 097-1 107.
  • 7Bigall N C, Parak W J, Doffs D. Nano Today[J], 2012, 7 (4) : 282-296.
  • 8Jonker B T, Park Y D, Bennett B R, et al. Phys Rev B[J] , 2000, 62( 12): 8 180-8 183.
  • 9Skumryev V, Stoyanov S, Zhang Y, et al. Nature[ J] , 2003, 423(6942) : 850-853.
  • 10Zeng H, Li J, Liu J P, et al. Nature[J], 2002, 420(6914) : 395-398.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部