期刊文献+

复合材料副簧刚度的匹配设计方法 被引量:2

Matching design method for stiffness of composite auxiliary spring
原文传递
导出
摘要 为了对复合材料副簧的刚度进行匹配设计,设计了包含有复合材料副簧的主副簧总成结构。采用集中载荷法计算复合材料副簧的等效载荷,根据原钢板弹簧的挠度变化来估算复合材料副簧的等效刚度。根据钢板弹簧设计理论,对复合材料副簧的等效刚度进行匹配设计。采用ABAQUS软件对设计的主副簧总成的总刚度进行有限元模拟,通过调整复合材料副簧的铺层数量来修正复合材料副簧的等效刚度。提出的匹配设计方法对复合材料板簧的推广应用具有重要意义。 In order to matching design the stiffness of composite auxiliary spring,the structure of the main-auxilia-ry spring assembly structure,which includes a composite auxiliary spring,was designed.The equivalent load of the composite auxiliary spring was calculated by the concentrated load method.According to the change of the deflection of the original steel leaf spring,the equivalent stiffness of the composite auxiliary spring was estimated.The equiva-lent stiffness of the composite auxiliary spring was matching designed according to the design theory of steel leaf spring.The finite element simulation for the total stiffness of the main-auxiliary spring assembly was made by ABAQUS software.By adj usting the ply number of the composite auxiliary spring,the equivalent stiffness of the composite auxiliary spring was modified.The proposed matching design method processes great importance for the popularization and application of composite leaf spring.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2016年第5期1119-1124,共6页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(51205158) 中国博士后科学基金面上资助项目(2013M541294) 吉林省重大科技专项(212E362415) 吉林大学研究生创新基金(450060503159)
关键词 客车 复合材料 板簧 轻量化 有限元 bus composite leaf spring weight reduction finite element
  • 相关文献

参考文献3

二级参考文献31

  • 1郑银环,张仲甫.利用ANSYS进行变截面板簧的优化分析[J].现代机械,2005(2):30-31. 被引量:6
  • 2杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12. 被引量:990
  • 3Al-Qureshi, H.A., 2001. Automobile leaf springs from com-posite materials. Journal of Materials Processing Tech-nology, 118(1-3):58-61. [doi:10.1016/S0924-0136(01) 00863-9].
  • 4Beardmore, P., 1986. Composite structures for automobiles. Composite Structures, 5(3):163-176. [doi:10.1016/0263- 8223(86)90001-2].
  • 5Beardmore, P., Johnson, C.F., 1986. The potential for com-posites in structural automotive applications. Composites Science and Technology, 26(4):251-281. [doi:10.1016/ 0266-3538(86)90002-3].
  • 6DOE-MSU, 2010. Wind Turbine Blade Composite Material Fatigue Database. Department of Chemical Engineering, Montana State University at Bozman, Montan 59717, USA. [doi:10.2172/578635].
  • 7Kumar, M.S., Sabapathy, V., 2007. Analytical and experi-mental studies on fatigue life prediction of steel and composites multi-leaf spring for light passenger vehicles using life data analysis. Materials Science, 13(2): 141-146.
  • 8Lukin, P., Gasparyants, G., Rodionov, V., 1989. Automobile Chassis-Design and Calculations. MIR Publisher, Moscow.
  • 9Mahdi, E., Alkoles, O.M.S., Hamouda, A.M.S., Sahari, B.B., Yonus, R., Goudah, G., 2006. Light composite elliptic springs for vehicle suspension. Composite Structures, 75(1-4):24-28. [doi:10.1016/j.compstruct.2006.04.082].
  • 10Morris, C.J., 1986. Composite integrated rear suspension. Composite Structures, 5(3):233-242. [doi:10.1016/0263- 8223(86)90005-X].

共引文献25

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部