期刊文献+

液态Ti-Al合金的深过冷与快速枝晶生长 被引量:3

Substantial undercooling and rapid dendrite growth of liquid Ti-Al alloy
下载PDF
导出
摘要 采用电磁悬浮和自由落体两种试验技术研究了液态Ti-25 wt.%Al合金的亚稳过冷能力、晶体形核机制和枝晶生长过程.试验发现,即使电磁悬浮无容器状态下仍难以消除润湿角θ≥60°的异质晶核,合金熔体过冷度可达210 K(0.11T_L).β-Ti相形核的热力学驱动力随过冷度近似以线性方式增大,其枝晶生长速度高达11.2 m/s,从而在慢速冷却条件下实现了快速凝固.理论计算表明,随着过冷度的逐步增大,β相枝晶生长从溶质扩散控制转变为热扩散控制.当过冷度超过100 K时,非平衡溶质截留效应可使合金熔体发生无偏析凝固.然而,单靠深过冷状态不足以抑制β相的后续固态相变.对于落管中快速凝固的直径77—1048μm合金液滴,其冷却速率最高达1.05×10~5K/s,深过冷与快速冷却的耦合作用能更有效地调控凝固组织形成过程. It is highly desirable to undercool titanium based alloy melts and modulate their dendritic solidification process due to the relevant applications in aerospace engineering.But the serious chemical reactivities of this category of alloys result in potent heterogeneous nucleation and suppress remarkable undercoolings in the course of normal material processing.This paper shows that such a challenge can be solved by containerless processing approach.Liquid Ti-25 wt.%Al alloy is highly undercooled and rapidly solidified under containerless state by both electromagnetic levitation and drop tube techniques.Its metastable undecoolability,crystal nucleation mechanism and dendrite growth process are examined experimentally and analyzed theoretically.Those heterogeneous nuclei with wetting angles above 60°are found to be quite difficult to eliminate even during levitation processing,thus reducing the undercoolability of this alloy.The maximum undercooling of bulk alloy melt reaches 210 K(0.11 T_L).The thermodynamic driving force to initiate the nucleation of β-Ti phase increases almost linearly with the enhancement of undercooling.The β phase dendrite displays a growth velocity up to 11.2 m/s,indicating that the rapid solidification is realized at the relatively slow cooling rate of levitated alloy melt.With the increase of undercooling,β phase dendrite experiences a kinetic transition from solute diffusion controlled to thermal diffusion controlled growth.Once undercooling exceeds 100 K,the nonequilibrium solute trapping effect brings about the practically desirable segregationless solidification.Nevertheless,the single condition of substantial undercooling is insufficient to suppress the solid state transformation of β phase.It is decomposed into α_2-Ti_3Al phase plus a small amount of γ-Ti Al compound after containerless solidification at levitated state.A more efficient approach to controlling and modulating the solidification microstructures is to utilize the coupled effects of high undercooling and rapid quenching,which proves to be feasible through the rapid solidification of alloy droplets inside drop tube.For those alloy droplets with diameters ranging from 77 to 1048 μm,their cooling rates attain a maximum of1.05 × 10~5K/s,and the predicted maximum undercooling is 227–778 K.In this case,β phase dendrites are well refined and kept in a metastable state until ambient temperature.The heat transfer calculations indicate that the thermal radiation is the dominant cooling mechanism for the large alloy droplets above 690 μm,whereas thermal convection becomes the major cooling mechanism for the small alloy droplets below 690 μm.The microgravity condition during free falling does not show apparent effect on the microstructural formation of these alloy droplets.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2016年第9期208-218,共11页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51471063 51271064 51401167)资助的课题~~
关键词 液态合金 深过冷 快速凝固 枝晶生长 liquid alloy substantial undercooling rapid solidification dendritic growth
  • 相关文献

参考文献2

二级参考文献22

  • 1赵红兆,荆涛,柳百成.铝合金三维枝晶生长相场模拟[J].金属学报,2005,41(5):491-495. 被引量:10
  • 2王海龙,王秀喜,王宇,梁海弋.非晶Ti_3Al合金的变形晶化机理的原子模拟[J].物理学报,2007,56(3):1489-1493. 被引量:4
  • 3Karma A,Rappel W J 1998 Phys. Rev. E 57 4323.
  • 4George W L,Warren J A 2002 J. Comput . Phys. 177 264.
  • 5Pusztai T,Bortel G,Granasy L 2005 Europhys. Lett. 71 131.
  • 6Pusztal T,Bortel G,Granasy L 2005 Mater. Sci. Eng.A 413-414 412.
  • 7Tan L J,Zabaras N 2006 J. Comput . Phys. 211 36.
  • 8Tan L J,Zabaras N 2007 J. Comput. Phys. 221 9.
  • 9Wang W,Lee P D,Mclean M 2003 Acta Mater. 51 2971.
  • 10Zhu M F,Hong C P 2002 ISIJ Int. 42 520.

共引文献13

同被引文献39

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部