期刊文献+

LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池的制备及电化学性能研究 被引量:1

Preparation and Electrochemical Performance of LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12) Full Cells
下载PDF
导出
摘要 以5 V高电压LiNi_(0.5)Mn_(1.5)O_4为正极材料,高安全性Li_4Ti_5O_(12)为负极材料制备了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池,重点研究了正负极容量配比对电池电化学性能的影响。其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 m Ah·g^(-1),循环200次的容量保持率为88%;在2 C电流下,P/N=1.4的电池的最高放电比容量为135.2 m Ah·g^(-1),循环740次的容量保持率为91.1%。P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关。 Full cells of LiNi0.5Mn1.5O4/Li4Ti5O12 have been prepared using LiNi0.5Mn1.5O4 and Li4Ti5O12 (LNMO/LTO) as cathode and anode, respectively. The effects of capacity ratio of positive electrode to negative electrode (P/N) on the electrochemical performance for the full cells have been researched. The system with the P/N for 1.4 has the best cyclic performance and rate capability. At 0.5 C, the full cell of LNMO/LTO with the P/N for 1.4 has the highest discharge specific capacity of 164.1 mAh.g-1, and 88 % is kept at the 200th cycle. At 2 C, the highest specific capacity of 135.2 mAh·g^-1 is delivered and 91.1% is kept for the system. The good rate capability and cyclic performance for the system originate fronl its small resistance and low polarization.
出处 《广东化工》 CAS 2016年第10期55-56,34,共3页 Guangdong Chemical Industry
基金 河南省科技厅重点科技公关项目 编号:152102210337
关键词 锂离子电池 镍锰酸锂 钛酸锂 lithium-ion batteries lithium nickel manganese oxide lithium titanate
  • 相关文献

参考文献13

  • 1Su X L, Huang T, Wang Y G, et al. Synthesis and electrochemical performance ofNano-sizedLi4Ti5Oi2[J]. 2016, 196: 300-308.
  • 2Wang C, Wang S, Tang L K, et al. A robust strategy for crafting monodisperse Li4TisO~2 nanospheres as superior rate anode for lithium ion batteries coated with boron-doped carbon[J]. Nano Energy, 2016,21 : 133-134.
  • 3Li W, Wang H, Chen M Z, et al. The reaction mechanism of the Mg2~ and F" co-modification and its influence on the electrochemical performance of the LiaTisOl~ anode material[J]. E|ectrochim Acta, 2016, 188: 499-511.
  • 4Zhang Q Y, Liu Y, Lu H S, et al. Ce3'-doped LiaTisO~2 with CeO2 surface modification by a sol-gel method for high-performance lithium-ion batteries[J]. ElectrochimActa, 2016, 189: 147-157.
  • 5Li X, Xu J, Huang P X, et al. ln-situ carbon coating to enhance the rate capability of the LiaTisOi2 anode material and suppress the electrolyte reduction decomposition on the electrode[J]. ElectrochimActa, 2016, 190: 69-75.
  • 6Sha Y J, Xu X M, Li L, et al. Hierarchical carbon-coated acanthospbere-tike Li4TisOi2 microspheres for high-power lithium-ion batteries[J]. J Power Sources, 2016, 314: 18-27.
  • 7Yan K, Liu X S, Liu L L, et al. The simulation on thermal stability of LiNi0.sMnt.504/C electrochemical system[J]. J Power Sources, 2016, 302: 1-6.
  • 8Axmann P, Gabrielli G, Wohlfahrt-Mehrens M. Tailoring high-voltage and high-performance LiNi0.5Mn~ 504 cathode material for high energy lithium-ion batteries[J]. J Power Sources, 2016, 301: 151-159.
  • 9Yi T F, Mei J, Zhu Y R. Key strategies for enhancing the cycling stability and rate capacity of LiNi0 5MnL 504 as high-voltage cathode materials for high power lithium-ion batteries[J]. J Power Sources, 2016, 316: 85-105.
  • 10Ulissi U, Zimmermann J, Brutti S, et al. Investigation of the electrochemical features of carbon-coated TiO2 anode for application in lithium-ion battery using high voltage LiNi0.sMnt 504 spinel cathode[J]. Electrochim Acta, 2016, 201: 158-164.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部