期刊文献+

极小曲面方程Bernstein定理的一个推广

An extension to Bernstein theorem on minimal surface equation
原文传递
导出
摘要 本文在一个平面有界集合外部考虑极小曲面方程,借助Monge-Ampère方程的性质,得到了解在无穷远处的渐近行为,扩展了经典的Bernstein定理. By using the property of Monge-Ampère equations, we give an asymptotic behavior at infinity of solutions of the minimal surface equations outside a bounded plane set, which extends the classical Bernstein theorem.
出处 《中国科学:数学》 CSCD 北大核心 2016年第5期513-522,共10页 Scientia Sinica:Mathematica
基金 北京市优秀博士论文指导教师科技项目(批准号:20131002701) 国家自然科学基金(批准号:11371060)资助项目
关键词 Bernstein定理 渐近行为 极小曲面方程 Bernstein theorem asymptotic behavior minimal surface equation
  • 相关文献

参考文献11

  • 1Bernstein S. Uber ein geometrisches theorem und seine anwendung auf die partiellen differentialgeichungen vom ellip- tischen typus. Math Z, 1927, 26:551-558.
  • 2J6rgens K. 0ber die LSsungen der differentialgleichung rt - s2 = 1. Math Ann, 1954, 127:130-134.
  • 3Nitsche J C C. Elementary proof of Bernstein's theorem on minimal surfaces. Ann Math (2), 1957, 66:543-544.
  • 4Jin T L, Xiong J G. A Liouville theorem for solutions of degenerate Monge-Ampere equations. Comm Partial Differ- ential Equations, 2014, 39:306-320.
  • 5Caffarelli L, Li Y Y. An extension to a theorem of JSrgens, Calabi, and Pogorelov. Comm Pure Appl Math, 2003, 56: 549-583.
  • 6Bao J G, Li H G, Zhang L. Monge-Ampére equation on exterior domains. Calc Var Partial Differential Equations, 2015, 52:39-63.
  • 7Ferrer L, Martenez A, Milan F. An extension of a theorem by K. JSrgens and a maximum principle at infinity for parabolic affine spheres. Math Z, 1999, 230:471 486.
  • 8Ferret L, Martlnez A, Milan F. The space of parabolic affine spheres with fixed compact boundary. Monatsh Math, 2000, 130:19-27.
  • 9Delanoe P. Partial decay on simple manifolds. Ann Global Anal Geom, 1992, 10:3-61.
  • 10Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. 2nd ed. Berlin: Springer, 1983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部