期刊文献+

Allen-Cahn方程的行波解速度的渐近公式 被引量:1

Asymptotic formula for the speed of traveling wave solutions to Allen-Cahn equation
原文传递
导出
摘要 本文研究通常Laplacian和分数次Laplacian的Allen-Cahn方程的行波解,以及方程在线性扰动情形下的行波速度的渐近公式,通过用非线性函数对行波解速度的估计,可以得到行波解的一致估计和解的导数在无穷远处的一致衰减估计,从而得到行波速度的渐近公式. In this paper, we investigate the asymptotic formula of the speed of the traveling wave solutions to the Allen-Cahn equations under linear perturbations with the usual and fractional Laplacians. The key ingredient is to estimate the traveling speeds in terms of the potential function. By estimating the traveling speed in terms of the nonlinear potential function, we can get the uniform estimates of solutions and uniform decay of derivatives of solutions at infinity, which will give us the asymptotic formula for the traveling speeds.
出处 《中国科学:数学》 CSCD 北大核心 2016年第5期549-562,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11371128)资助项目
关键词 行波解 行波速度 Allen-Cahn方程 分数次Laplacian traveling wave solution traveling speed Allen-Cahn equation fractional Laplacian
  • 相关文献

参考文献12

  • 1Cabre X, Sire Y. Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions. Trans Amer Math Soe, 2015, 367:911-941.
  • 2Gui C, Zhao M. Traveling wave solutions of Allen-Cahn equation with a fractional Lapiacian. Ann Inst H Poincarfi Anal Non Lineaire, 2015, 32:785 -812.
  • 3Barles G, Soner H M, Souganidis P E. Front propagation and phase field theory. SIAM J Control Optim, 1993, 31: 439-469.
  • 4Imbert C, Souganidis P E. Phase field theory for fractional diffusion-reaction equations and applications. ArXiv:0907. 5524, 2009.
  • 5Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. New York: Springer, 2001.
  • 6Bony J, Courrege P, Priouret P. Semi-groupes de Feller sur une vari@t@ k bord eompacte et problemes aux limites integro-differentiels du second ordre dormant lieu au principe du maximum. Ann Inst Fourier (Grenoble), 1969, 18: 369- 521.
  • 7Kim Y, Lee K. Regularity results for fully nonlinear integro-differential operators with nonsymmetric positive kernels: Suberitical case. Potential Anal, 2013, 38:433- 455.
  • 8Kim Y, Lee K. Regularity results for fully nonlinear parabolic integro-differential operators. Math Ann, 2013, 357: 1541- 1576.
  • 9Silvestre L. HSlder estimates for advection fractional-diffusion equations. Ann Se Norm Super Pisa C1 Sci (5), 2012, 11:843-855.
  • 10Silvestre L. On the differentiability of the solution to an equation with drift and fractional diffusion. Indiana Univ Math J, 2012, 61:557é584.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部