期刊文献+

Khler曲面上的辛临界曲面

The symplectic critical surfaces in a Khler surface
原文传递
导出
摘要 本文在辛曲面类中研究了泛函Lβ=∫Σ1cos^βαdμ,β≠-1.之前的研究曾推导了它的EulerLagrange方程,并把满足这个方程的曲面称为β辛临界曲面.当β=0时,得到的是极小曲面方程;当β≠0时,常Khler角极小曲面满足这个方程.特别地,全纯曲线或特殊Lagrange曲面满足这个方程.本文研究β辛临界曲面的一些性质. In this paper, we study the functional Lβ =Σ1cos~βαdμ, β≠-1 in the class of symplectic surfaces.We derive the Euler-Lagrange equation. We call such a critical surface a β-symplectic critical surface. When β = 0, it is the equation of minimal surfaces. When β≠ 0, a minimal surface with constant Khler angle satisfies this equation. Especially, a holomorphic curve or a special Lagrangian surface satisfies this equation. We study the properties of the β-symplectic critical surfaces.
出处 《中国科学:数学》 CSCD 北大核心 2016年第5期563-570,共8页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11131007 11471014 11401440和11426236)资助项目
关键词 辛曲面 辛临界曲面 全纯曲线 symplectic surface symplectic critical surface holomorphic curve
  • 相关文献

参考文献7

  • 1Chern S S, Wolfson J. Minimal surfaces by moving frames. Amer J Math, 1983, 105:59-83.
  • 2Han X, Li J. Symplectic critical surfaces in Kahler surfaces. J Eur Math Soc, 2010, 12:505 -527.
  • 3Han X, Li J, Sun J. The deformation of symplectic critical surfaces in a Kahler surface--I. ArXiv:1504.041, 2015.
  • 4Arezzo C. Minimal surfaces and deformations of holomorphic curves in Kahler-Einstein manifolds. Ann Sc Norm Super Pisa C1 Sci (5), 2000, 29:473 -481.
  • 5Micallef M, Wolfson J. The second variation of area of minimal surfaces in four-manifolds. Math Ann, 1993, 295: 245-267.
  • 6Webster S M. Minimal surfaces in a Kahler surface. J Differential Geom, 1984, 20:463-470.
  • 7Chen J, Tian G. Minimal surfaces in Riemannian 4-manifolds. Geom Funct Anal, 1997, 7:873-916.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部