期刊文献+

一些C^2泛函的临界点定理的非光滑推广

Nonsmooth generalization of some critical point theorems for C^2 functionals
原文传递
导出
摘要 本文基于裂开定理的新近结果,并结合度量临界点理论与局部Lipsitich泛函的临界点理论,推广经Morse理论方法获得的一些对C^2泛函的临界点定理到一类Frchet可微且连续方向可微泛函.一个关键是,对Banach空间开集上的Frchet可微且严格Hadamard可微(比局部Lipschitz连续强但比连续方向可微弱)的泛函,观察到它作为连续泛函的度量临界点集、作为Frchet可微泛函的临界点集及作为局部Lipschitz连续泛函的临界点集都一致. In this paper, we combine the author's recent results on splitting theorems, with metric critical point theory and critical point theory for locally Lipschitz functionals, to generalize some critical point theorems for C^2 functionals obtained via Morse theoretic methods to a class of both Frchet differentiable and continuously directional differential functionals. As a key, if a functional on an open subset of a Banach space is Frchet differentiable, and strictly Hadamard differentiable(which is stronger than locally Lipschitz continuity, but weaker than continuously directional differentiability), we observe that it has the same critical set as a continuous functional on a metric space, a Fr′echet differentiable one, and a locally Lipschitz continuous one.
作者 卢广存
出处 《中国科学:数学》 CSCD 北大核心 2016年第5期615-638,共24页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11271044)资助项目
关键词 临界点 临界群 MORSE不等式 critical point critical group Morse inequality
  • 相关文献

参考文献50

  • 1Chang K C, Variational methods for non-differentiable functionals and their applications to partial differential equa- tions. J Math Anal Appl, 1981, 80:102-129.
  • 2Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley, 1983.
  • 3Degiovanni M, Marzocchi M. A critical point theory for nonsmooth functionals. Ann Mat Pura Appl (4), 1994, 167: 73 100.
  • 4Corvellec J N. Morse theory for continuous functionals. J Math Anal Appl, 1995, 196:1050-1072.
  • 5Gromoll D, Meyer W. On differentiable functions with isolated critical points. Topology, 1969, 8:361-369.
  • 6Chang K C. Infinite Dimensional Morse Theory and Its Applications. Séminaire de Mathématiques Supérieures, vol. 97. Montreal: Presses de l'Université de Montreal, 1985.
  • 7Chang K C. Infinite Dimensional Morse Theory and Multiple Solution Problems. Boston: Birkhéuser, 1993.
  • 8Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences, vol. 74. New York: Springer-Verlag, 1989.
  • 9Li C, Li S J, Liu Z, et al. On the Fucik spectrum. J Differential Equations, 2008, 244:2498-2528.
  • 10Bartsch T, Li S J. Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear Anal, 1997, 28:419-441.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部