期刊文献+

半正定张量 被引量:3

Positive semidefinite tensors
原文传递
导出
摘要 随着大数据时代的来临,承载高阶高维信息的张量结构备受关注,从而引发了关于张量的理论、计算和应用的广泛研究.与矩阵的情形类似,作为张量理论的一个重要组成部分的半正定张量理论,也在实际问题中凸显出不可或缺的作用.本文旨在对张量的半正定性理论进行简单的梳理与总结,并希望对张量理论的未来发展提供可能的研究方向. In the era of big data, the high-order high-dimensional tensor structure has attracted more and more attention, which further leads to the extensive study on tensor theory, computation and applications. Analogous to the matrix case, the positive semidefinite tensors, which form an important class of tensors, have played an essential role in tensor applications. This paper aims to provide a simple survey of the positive semidefiniteness of tensors and some potential research directions on tensor theory.
出处 《中国科学:数学》 CSCD 北大核心 2016年第5期639-654,共16页 Scientia Sinica:Mathematica
基金 香港研究资助局(批准号:PolyU 502111 501212 501913和15302114) 国家自然科学基金(批准号:11301022和11431002)资助项目
关键词 半正定张量 结构张量 张量特征值 positive semidefinite tensor structured tensor tensor eigenvalues
  • 相关文献

参考文献3

二级参考文献68

  • 1Bloy L, Verma R. On computing the underlying fiber directions from the diffusion orientation distribution function. In: Medical Image Computing and Computer- Assisted Intervention MICCAI 2008. Berlin/Heidelberg: Springer, 2008, 1 8.
  • 2Bulb S R, Pelillo M. New bounds on the clique number of graphs based on spectral hypergraph theory. In: Stiitzle T, ed. Learning and Intelligent Optimization. Berlin: Springer-Verlag, 2009, 4548.
  • 3Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6:50520.
  • 4Chang K C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350:416-422.
  • 5Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32:806-819.
  • 6Chang K C, Qi L, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370:284-294.
  • 7Collatz L. Einschliessungssatz fiir die charakteristischen Zahlen von Matrizen. Math Z, 1942, 48:221-226.
  • 8De Lathauwer L, De Moor B Vandewalle J. On the best rank-1 and rank-(R1, ..., RN) approximation of higher-order tensors. SIAM J Matrix Anal Appl, 2000, 21:1324 1342.
  • 9Drineas P, Lim L -H. A multilinear spectral theory of hyper-graphs and expander hyper- graphs. 2005.
  • 10Friedland S, Gaubert S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl, 2013, 438:738-749.

共引文献6

同被引文献4

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部