摘要
本文作为综述,讨论了由Li和Zhang引入的闭近复流形上J-反变上同调的若干性质;特别地,利用与度量(辛形式)相容近复结构,探索了闭近Hermite(Khler)四维流形上的J-反变上同调子群H的维数h.本文还研究了闭辛流形上由Tseng和Yau引入的辛上同调群与J-反变上同调群的关系;对于自对偶第二Betti数为1的闭驯化四维近复流形,考虑了Donaldson问题.
In this survey, we discuss some properties of J-anti-invariant cohomology introduced by Li and Zhang. In particular, we investigate properties of the dimension h of the J-anti-invariant cohomology subgroup H of closed almost Hermitian(Khler) four-manifolds using metric(symplectic form) compatible almost complex structures. We study the relationship between J-anti-invariant cohomology and new symplectic cohomologies introduced by Tseng and Yau on a closed symplectic manifold. Moreover, we consider Donaldson question for tamed closed almost complex four-manifolds with b~+= 1.
出处
《中国科学:数学》
CSCD
北大核心
2016年第5期697-708,共12页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11371309)资助项目
关键词
J-反变上同调
辛上同调
ω-驯化(相容)近复结构
正(1
1)流
J-anti-invariant cohomology
symplectic cohomology
ω-tame(compatible) almost complex structure
positive(1
1) current