期刊文献+

十字花目植物ER body的形成机制及其生物学功能 被引量:1

The formation and biological function of ER bodies in Brassicales
原文传递
导出
摘要 在长期进化过程中,为了应对外界环境胁迫,植物细胞形成了多种具有特殊功能的内质网衍生结构,其中大部分是物种所特有的,尤其是在十字花目植物中发现的ER body。在ER body上特异性聚积的β-葡萄糖苷酶(PYK10/BGLU21)、NAI2、膜蛋白MEB1/2以及转录因子NAI1在ER body形成过程中起重要作用。ER body主要富集在植物与外界环境相互接触的界面部位,损伤或植物激素处理能够诱导ER body形成。β-葡萄糖苷酶能够产生对害虫入侵具有抵御作用的物质,其活性在细胞破碎时增强。因此,ER body在植物免疫中发挥功能。本文将对十字花目植物(拟南芥)中ER body的形成机制进行阐述,并探讨其生物学功能。 During long-term evolution, in order to response to stress from external environment, plant cells developed various endoplasmic reticulum(ER)-derived structures with specific functions, most of which are specific for certain groups of species. The ER body is developed in plants of the Brassicales. The accumulation of proteins specific for the ER body play an important role in the formation of ER bodies, such as β-glucosidases(PYK10/BGLU21), NAI2, membrane protein MEB1/2, and transcription factor NAI1. ER body is mainly concentrated in the interface between plants and environment, while wounding or plant hormone treatment will induce de novo formation of ER bodies. β-glucosidases can produce substances that potentially protect against invading pests, and the enzymatic activities of β-glucosidases are enhanced during cell collapse. Therefore, ER bodies are involved in plant defenses. In this review, we provide recent perspectives of formation of ER bodies in the Brassicales, and discuss the functions of ER bodies.
出处 《植物生理学报》 CAS CSCD 北大核心 2016年第4期401-412,共12页 Plant Physiology Journal
基金 中央高校基本科研业务费专项资金(DL13EA04) 国家自然科学基金(31570246)
关键词 内质网 ER BODY Β-葡萄糖苷酶 芥子油苷 植物防御 endoplasmic reticulum ER body β-glucosidase glucosinolate plant defenses
  • 相关文献

参考文献66

  • 1Ahn YO, Shimizu B, Sakata K, Gantulga D, Zhou C, Bevan DR, Esen A .(2010). Scopolin-hydrolyzing 13-glucosidases in roots of Ara- bidopsis. Plant Cell Physiol, 51 (1): 132-143.
  • 2Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF .(2004). GDS1 fam- ily of serine esterases/lipases. Prog Lipid Res, 43 (6): 534-552.
  • 3Bednarek P, Pislewska BM, Svatos A, Schneider B, Doubsky J, Mans- urova M, Humphry M, Consonni C, Panstruga R, Sanchez VA, et al .(2009). A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323 (5910): 101-106.
  • 4Behnke HD, Eschlbeck G .(1978). Dilated cisternae in capparales-an attempt towards the characterization of a specific endoplasmic reticulum. Protoplasma, 97 (4): 351-363.
  • 5Bonnett HT, Newcomb EH .(1965). Polyribosomes and cisternal accu- mulations in root cells of radish. J Cell Biol, 27 (2): 423-432.
  • 6Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J .(2003). Variation of glucosinolate accumulation among different organs and devel- opmental stages ofArabidopsis thaliana. Phytochemistry, 62 (3): 471-481.
  • 7Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P .(2013). Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol, 64:807-838.
  • 8Chen S, Novick P, Ferro NS .(2013). ER structure and function. Curr Opin Cell Biol, 25 (4): 428-433 D.
  • 9elaux PM, Sejalon DN, Becard G, Ane JM .(2013). Evolution of the plant-microbe symbiotic 'toolkit'. Trends Plant Sci, 18 (6): 298-304.
  • 10Falk A, Rask L .(1995). Expression of a -glucosidase in Brassica napus. Plant Physiol, 108 (4): 1369-Annu Rev Entomol, 54:57-83.

二级参考文献98

  • 1Alexander N J, McCormick SP, Waalwijk C, van der Lee T, Proc- tor RH (2011). The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol, 48: 485-495.
  • 2Alexander N J, Proctor RH, McCormick SP (2009). Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev, 28:198-215.
  • 3Ashley JN, Hobbs BC, Raistrick H (1937). Studies in the biochemis- try of micro-organisms LIII. The crystalline colouring matters of Fusarium culmorum (W. G. Smith) sacc. and related forms. Biochem J, 31: 385-397.
  • 4Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N J, Keller NP, Yu JH et al (2008). VelB/VeA/LaeA complex coordinates light signal with fungal de- velopment and secondary metabolism. Science, 320:1504-1506.
  • 5Bennett JW, Klich M (2003). Mycotoxins. Clin Microbiol Rev, 16: 497-516.
  • 6Brakhage AA, Schroeckh V (2011). Fungal secondary metabolites- Strategies to activate silent gene clusters. Fungal Genet Biol, 48: 15-22.
  • 7Brown DW, Dyer RB, McCormick SP, Kendra DF, Plattner RD (2004). Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol, 41 : 454-462.
  • 8Brown DW, McCormick SP, Alexander N J, Proctor RH, Desjardins AE (2002). Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol, 36:224-233.
  • 9Butchko RA, Plattner RD, Proctor RH (2006). Deletion analysis of FUM genes involved in tricarballylic ester formation during fu- monisin biosynthesis. J Agric Food Chem, 54:9398-9404.
  • 10Candau R, Avalos J, Cerda-Olmedo E (1991). Gibberellins and carote- noids in the wild type and mutants of Gibberellafujikuroi. Appl Environ Microbiol, 57:3378-3382.

共引文献13

同被引文献33

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部