期刊文献+

内生无限网格环境下基于反协同对局的局部策略互动

Local Strategic Interaction Based on the Anti-coordination Game Under the Endogenous Infinite Lattice
下载PDF
导出
摘要 在内生无限平面网格环境下,建立基于反协同对局的局部策略互动模型。网格生成过程中,采用JN规则作为连接生成规则,并假设连接两端的局中人都要承担连接费用。将反协同对局与内生的无限平面网格环境联系在一起,针对基于反协同对局的局部策略互动模型,论证了不同参数范围以及不同费用水平下的纳什均衡结果,并且通过Netlogo软件进行建模仿真。 In the context of endogenous infinite lattice,the model of local strategic interaction with the anticoordination game is structured.In the process of network formation,the Jackson-van den Nouweland(JN)rule is taken as the links′formation rule,and the assumption is taken that both agents between one link should bear the cost of the link.Based on the connection of anti-coordination game and endogenous infinite lattice,the problem of local strategic interaction with anti-coordination game is studied.The Nash equilibrium structure is given under different parameters and different levels of cost.And the analytical results by NetLogo simulation program are illustrated.
出处 《青岛大学学报(自然科学版)》 CAS 2016年第1期7-14,共8页 Journal of Qingdao University(Natural Science Edition)
基金 国家自然科学基金(批准号:71571108 71171120)资助 国家自然科学基金国际(地区)合作交流项目(批准号:71411130215)资助 教育部高等学校博士学科点专项科研基金(批准号:20133706110002)资助 山东省自然科学基金(批准号:ZR2015GZ007)资助 青岛大学研究生教育创新计划(批准号:QDY12017 QDY13004)资助
关键词 网络对策 内生无限网格 反协同对局 策略互动 纳什均衡 network game endogenous infinite lattice anti-coordination game strategic interaction nash equilibrium
  • 相关文献

参考文献2

二级参考文献8

  • 1GAO HongWei,YANG HuiJing,WANG GuiXi & YU Kun College of Mathematics,Qingdao University,Qingdao 266071,China.The existence theorem of absolute equilibrium about games on connected graph with state payoff vector[J].Science China Mathematics,2010,53(6):1483-1490. 被引量:5
  • 2Berge C,Ghouila-Houri A.Programming,Games and Transportation Networks. . 1965
  • 3Gao H W,Petrosyan L.Dynamics Cooperative Games. . 2009
  • 4Rozen V.Games with quasiordered outcomes on graph. Proceedings of International Conference in Memory of Zubov V I.Stability and Control Processes,SCP’2005 . 2005
  • 5L.Petrosyan,D.Kusyutin.Games in Extensive From:Optimality and Stability. . 2000
  • 6Petrosyan L,,Mamkina S.New Value for dynamic Games with Perfect Information and Changing Coalitional Structure. Vestnik of St.Petersburg Univ . 2004
  • 7Zemelo E.On the application of set theory to the theory of chess. Matrix Games . 1961
  • 8高红伟,王桂熙,杨慧敬,于琨.网格状有向图上的部分合作对策[J].应用数学学报,2010,33(1):161-170. 被引量:7

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部