期刊文献+

基于影响力的微博新兴热点事件检测 被引量:2

INFLUENCE-BASED DETECTION OF EMERGING HOT EVENTS IN MICROBLOGS
下载PDF
导出
摘要 从微博中准确高效地挖掘出正在发生的热点事件是近年来研究的热点。通过综合考虑微博用户的粉丝数量和微博本身的转发、评论次数计算每条微博的影响力,从而提出一种基于影响力的微博新兴热点事件检测方法 IEED(Influence-Based Emerging Hotspot Event Detection)。该方法运用层次聚类将微博帖子聚类为事件集,并提取出事件中的关键词构成事件摘要。通过运用现实生活中的新浪微博数据作为实验数据集来测试所提出的方法,实验结果证明,基于影响力的微博新兴热点事件检测方法(IEED)能在早期高效地检测出微博中的新兴热点事件,具备一定的应用价值。 To accurately and efficiently mine the hot events on occurrence from microblogs is the focus of research in recent years. In this paper we propose an influence-based emerging hot events detection( IEED) approach by comprehensively considering the fans number of microblogging users and the influence of each microblog calculated from the number of its forwarding and comments. The approach uses hierarchical clustering to cluster the microblogging messages into event set,and extracts the keywords in the events to form event abstracts.We tested the approach presented in the paper by using the experimental dataset set up from Sina microblogging data in real life,the experimental result proved that the influence-based IEED could efficiently detect the emerging hot events in microblogs at early time,and had certain applied value.
作者 李华 朱荔
出处 《计算机应用与软件》 CSCD 2016年第5期98-101,165,共5页 Computer Applications and Software
关键词 新兴事件检测 微博影响力 聚类 Emerging events detection Microblog influence Clustering
  • 相关文献

参考文献14

  • 1Allan J,Carbonell J,Doddington G,et al.Topic detection and tracking pilot study final report[C]//Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop,Feb 1998:194-218.
  • 2Sayyadi H,Hurst M,Maykov A.Event detection andtrackingin social streams[C]//Proceedings of the 3rd International AAAI Conference on Weblogs and Social Media(ICWSM 09),San Jose,California,USA,May 17-20,2009:311-314.
  • 3Ozdikis O,Senkul P,Oguztuzun H.Semantic expansion of hashtags for enhanced event detection in Twitter[C]//Proceedings of the 1st International Workshop on Online Social Systems(WOOS),2012.
  • 4Cataldi M,Di Caro L,Schifanella C.Emerging topic detection on twitter based on temporal and social terms evaluation[C]//Proceedings of the Tenth International Workshop on Multimedia Data Mining(MDMKDD).ACM,2010:4.
  • 5Alvanaki F,Michel S,Ramamritham K,et al.See what’s enblogue:real-time emergent topic identification in social media[C]//Proceedings of the 15th International Conference on Extending Database Technology.ACM,2012:336-347.
  • 6Unankard S,Li X,Sharaf M A.Location-based emerging event detection in social networks[M].Web Technologies and Applications.Springer Berlin Heidelberg,2013.
  • 7Duds R O,Hart P E.Pattern classification and scene analysis[M].A Wiley lnterscience Publication,John Wiley and Sons,Inc,1973.
  • 8童薇,陈威,孟小峰.EDM:高效的微博事件检测算法[J].计算机科学与探索,2012,6(12):1076-1086. 被引量:19
  • 9李凤岭,朱保平.基于LDA模型的微博话题发现技术研究[J].计算机应用与软件,2014,31(10):24-26. 被引量:10
  • 10Weng J,Lee B S.Event Detection in Twitter[J].Proceedings of Association for the Advancement of Artificial Intelligence,2011(11):401-408.

二级参考文献40

  • 1中国互联网信息中心.第30次中国互联网络发展状况统计报告[R].2012.
  • 2Zhao Qiankun, Mitra P, Chen Bi. Temporal and information flow based event detection from social text streams[C]//Pro- ceedings of the 22nd AAAI Conference on Artificial Intel- ligence (AAAI '07), Vancouver, Canada, Jul 22-26, 2007: 1501-1506.
  • 3Sayyadi H, Hurst M, Maykov A. Event detection and tracking in social streams[C]//Proceedings of the 3rd International AAAI Conference on Weblogs and Social Media (ICWSM '09), San Jose, California, USA, May 17-20, 2009: 311-314.
  • 4Li Juanzi, Li Jun, Tang Jie. A flexible topic-driven frame- work for news exploration[C]//Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '09), Paris, France, Jun 28-Jul 1, 2009.
  • 5Allan J, Carbonell J, Doddington G, et al. Topic detection and tracking pilot study final report[C]//Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop, Feb 1998: 194-218.
  • 6Dai Xiangying, Chen Qingcai, Wang Xiaolong, et al. Online topic detection and tracking of financial news based on hier- archical clustering[C]//Proceedings of the 2010 InternationalConference on Machine Learning and Cybernetics (ICMLC '10), Qingdao, China, Jul 11-14, 2010: 3341-3346.
  • 7Deerwester S, Dumais S T, Furnas G W, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990, 41(6): 391-407.
  • 8Hofmann T. Probabilistic latent semantic analysis[C]//Pro- ceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '99), Stockholm, Sweden, Jul 30-Aug 1, 1999. New York, NY, USA: ACM, 1999: 50-57.
  • 9Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
  • 10Phuvipadawat S, Murata T. Breaking news detection and tracking in Twitter[C]//Proceedings of the 2010 Interna- tional Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT ' 10), Toronto, Canada, Aug 31-Sep 3, 2010: 120-130.

共引文献56

同被引文献46

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部