期刊文献+

基于情感特征和用户关系的虚假评论者的识别 被引量:19

SPOTTING FAKE REVIEWERS BASED ON SENTIMENT FEATURES AND USERS' RELATIONSHIP
下载PDF
导出
摘要 随着电子商务的迅速发展,人们越来越亲睐于网上购物。在网上购物之前,消费者往往会参考该产品相关的评价以决定是否购买。因此虚假评论者的识别具有非常重要的意义。基于虚假评论者和真实评论者在情感极性上存在的差异,在特征建模过程中增加了评论文本的情感特征,并结合用户之间对于特定商品之间的关系,创建了一个多边图的模型并提出了一种识别虚假评论者的方法。实验结果验证了该算法的有效性。 With the rapid development of e-commerce,online shopping becomes more and more appealing. Before shopping online,consumers usually tend to refer to the relevant comments to decide whether to buy the products or not. Therefore,to identify fake reviewers is of great significance. Based on the difference of emotional polarities between fake reviewers and real reviewers,we added the sentiment features of comment text to feature modelling process. Combined with the inter-relationship between users and specific commodities,we constructed a multi-edge graph model and came up with a method of spotting fake reviewers. Experimental results verified the effectiveness of the proposed algorithm.
出处 《计算机应用与软件》 CSCD 2016年第5期158-161,172,共5页 Computer Applications and Software
关键词 电子商务 虚假评论者 情感特征 用户关系 E-commerce Fake reviewers Sentiment features Users relationship
  • 相关文献

参考文献12

  • 1Jindal N,Liu B.Review spam detection[C]//Proceedings of the 16th international conference on World Wide Web,Banff,AB,Canada,May08-12,2007.New York,NY,USA:ACM,2007:1189-1190.
  • 2Jindal N,Liu B.Opinion spam and analysis[C]//Proceedings of the international conference on Web search and web data mining,California,USA,Feb 11-12,2008.New York,NY,USA:ACM,2008:219-230.
  • 3Li F,Huang M,Yang Y,et al.Learning to identify review spam[C]//Proceedings of the 22nd international joint conference on Artificial Intelligence,Barcelona,Spain,Jul 16-22,2011.Palo Alto,CA,USA:AAAI,2011:2488-2493.
  • 4Lim E,Nguyen V,Jindal N,et al.Detecting product review spammers using rating behaviors[C]//Proceedings of the 19th ACM international conference on Information and knowledge management,Toronto,ON,Canada,October 26-30,2010.New York,NY,USA:ACM,2010:939-948.
  • 5Lai C,Xu K,Lau R,et al.High-order concept associations mining and inferential language modeling for online review spam detection[C]//Data Mining Workshops(ICDMW),2010 IEEE International Conference,Sydney,NSW,Australia,Dec 13-13,2010.Washington,DC,USA:IEEE,2010:1120-1127.
  • 6Wang G,Xie S H,Liu B,et al.Review Graph Based Online Store Review Spammer Detection[C]//Proceedings of the 11th International Conference on Data Mining,Mesa,Arizona,USA,April 28-30,2011.Washington,DC,USA:IEEE,2011:1242-1247.
  • 7Mukherjee A,Kumar A,Liu B,et al.Spotting opinion spammers using behavioral footprints[C]//Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining,Chicago,IL,USA,August 11-14,2013.New York,NY,USA:ACM,2013:632-640.
  • 8Liang D X,Liu X Y,Shen H.Detecting Spam Reviewers by Combing Reviewer Feature and Relationship[C]//Informative and Cybernetics for Computational Social Systems(ICCSS),2014 International Conference,Qingdao,Shandong,China,Oct 9-10 2014.Washington,DC,USA:IEEE,2014:102-107.
  • 9Mukherjee A,Liu B,Wang J,et al.Detecting group review spam[C]//Proceedings of the 20th international conference companion on World wide web,Hyderabad,India,March 28-April 01,2011.New York,NY,USA:ACM,2011:93-94.
  • 10Mukherjee A,Liu B,Glance N.Spotting fake reviewer groups in consumer reviews[C]//Proceedings of the 21st international conference on World Wide Web,Lyon,France April 16-20,2012.New York,NY,USA:ACM,2012:191-200.

同被引文献147

引证文献19

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部