期刊文献+

乙醇脱氢酶过表达对醋酸菌发酵产酸影响研究 被引量:5

The production of acetic acid by Acetobacter pasteurianus with enhanced expression of alchol dehydrogenase
原文传递
导出
摘要 目的:通过构建乙醇脱氢酶过表达基因工程菌株提高醋酸菌醋酸发酵产率。方法:PCR扩增沪酿1.01 Acetobacter pasteurianus CICC20001的乙醇脱氢酶亚基I(Alcohol dehydrogenase I,adh A)和乙醇脱氢酶亚基II(Cytochrome c subunit,adh B)基因,将其依次连接到质粒pBBR1MCS-4中,构建重组质粒pBBR-adh A-adh B,并将该重组质粒导入沪酿1.01,成功获得过表达乙醇脱氢酶的基因工程菌,并对基因工程菌与原始菌的微观形态以及发酵特性进行对比分析。结果:乙醇脱氢酶过表达基因工程菌的醋酸发酵产率和酒精耐受性都有所提高。结论:乙醇脱氢酶的过表达不仅提高了醋酸菌的产酸率,其酒精耐受性也有显著提高。 Objective: The production of acetic acid was raised by constructing an engineered strain with high-expressed alchol dehydrogenase(ADH).Methods: Genes adh A and adh B of Acetobacter pasteurianus CICC20001 which coding the subunit I and subunit II of alcohol dehydrogenase were amplified by PCR,and linked with vector to get the plasmid vector p BBR-adh A-adh B.Then the engineered strain was obtained through inserting the plasmid into Acetobacter pasteurianus CICC20001.And the micromorphology and fermentation characteristics of the engineered strain and original strain were contrasted and analyzed,respectively.Results: The production of acetic acid and the tolerance of ethanol by fermentation of engineered strain were both improved.Conclusion: The enhanced expression of ADH can not only increase acetic acid yield but also improve the tolerance of ethanol significantly.
出处 《食品科技》 CAS 北大核心 2016年第4期13-18,共6页 Food Science and Technology
基金 安徽省自然科学基金项目(1408085MKL17)
关键词 沪酿1.01 乙醇脱氢酶 发酵产率 酒精耐受性 Acetobacter pasteurianus CICC20001 alcohol dehydrogenase fermentation yield ethanol tolerance
  • 相关文献

参考文献20

  • 1王亚利,洪厚胜,张庆文,李波.耐高温高酸醋酸菌优化研究进展[J].中国调味品,2008,33(3):23-28. 被引量:3
  • 2Kanchanarach W G, Theeragool T, Yakushi, et al. Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases[J]. Appl Microbiol Biotechnol,2010,85:741-751.
  • 3Azuma Y, Hosoyama A, Matsutani M, et al. Whole- genome analyses reveal genetic instability of Acetobacter pasteurianus[J]. Nucleic Acids Res,2009,37(17):5768-5783.
  • 4Yakushi T, Matsushita K. Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology[J]. Appl Microbiol Biotechol,2010,86:1257- 1265.
  • 5Quintero Y, Poblet M, Guillamon J, et al. Quantification of the expression of reference and alcohol dehydrogenase genes of some acetic acid bacteria in different growth conditions[J]. Appl Microbiol,2009,106:666-674.
  • 6Trcek J, Jernejc K, Matsushita K. The highly tolerant acetic acid bacterium Giuconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression[J]. Extremophiles,2007,11(4):627-635(9).
  • 7Toyama H, Mathews F S, Adachi O, et al. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology[J]. Archives of Biochemistry & Biophysics,2004, 428(1):10-21.
  • 8Shigeru N, Masahiro F, Sueharu H. Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti[J]. Applied & Environmental Microbiology,2006,72(1):497- 505.
  • 9Nakano S, Fukaya M, Horinouchi S. Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti [J]. Ferns Microbiology Letters,2004,235(2):315-322.
  • 10Chinnawirotpisan P, Theeragool G, Limtong S, et al. Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKUllO8[J]. Journal of Bioscience & Bioengineering,2003,96(6):564-71.

二级参考文献30

共引文献14

同被引文献64

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部