期刊文献+

基于辛普森公式的美式期权定价最优实施边界新算法 被引量:2

A new Algorithm of the optimal exercise boundary for pricing american options based on simpson formula
下载PDF
导出
摘要 美式期权定价问题归结为最优实施边界问题,最优实施边界适合非线性第二类Volterra积分方程。研究了积分方程的求解问题,提出了基于复合辛普森方法的不动点迭代格式,分析了格式的代数精度,并进行了最优实施边界的模拟,结果验证了方法的有效性,为实际应用提供了理论基础。 The problem of pricing American option is to study the optimal exercise boundary, which is most suitable by using the nonlinear Volterra integral equation of the second kind. The integral equation was studied and the fixed point iteration scheme was presented as well based on the composite Simpson formu- la. It analysed the Algebraic precision scheme. The optimal exercise boundary was simulated. Our result verified the effectiveness of the method,which could provide a theoretical basis for practical applications.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2015年第6期525-528,共4页 Journal of Nanchang University(Natural Science)
基金 山西省自然科学基金资助项目(2011011002-3) 山西省高等学校教学改革项目(J2015118)
关键词 辛普森方法 VOLTERRA积分方程 美式期权 最优实施边界 Simpson formula Volterra integral equation pricing American option ~ optimal exercise boundary
  • 相关文献

参考文献15

  • 1BLACK F, SCHOLES M. The Pricing of Options and Corporate Liabilities[J]. The Journal of Political Econ- omy, 1973 : 637-654.
  • 2MERTON R C, BRENNAN M J,SCHWARTZ E S. The Valuation of American Put Options[J]. The Jour- nal of Finance,1977,32(2):449-462.
  • 3ALLEGRETTO W, LIN Y, YANG H. A Fast and Highly Accurate Numerical Method for the Evaluation of American Options[J]. Dynamics of Continuous Dis- crete and Impulsive Systems Series B, 2001,8: 127- 138.
  • 4HON Y C,MAO X Z. A Radial Basis Function Method for Solving Options Pricing Models[J]. Journal of Fi-nancial Engineering, 1999,8 : 31-50.
  • 5COX J C, ROSS S A, RUBINSTEIN M. Option Pri- cing : A Simplified Approach[J]. Journal of Financial E- conomics, 1979,7(3) : 229-263.
  • 6GRART D,VORA G,WEEKS D E. Simulation and the Early Exercise Option Problem[J]. J. of Financial En- gineering, 1996,5(3):211-227.
  • 7LONGSTAFF F A, SCHWARTZ E S. Valuing Ameri- can Options by Simulation: a Simple Least-squares Ap- proach[J]. Review of Financial Studies, 2001,14 ( 1 ) : 113-147.
  • 8MACMILLAN L W. Analytic Approximation for the American Put Option[J]. Advances in Futures and Op- tions Research, 1986,1 (1) : 119-139.
  • 9BARONEADESI G,WHALEY R E. Efficient Analytic Approximation of American Option Values [J]. The Journal of Finance, 1987,42(2) : 301-320.
  • 10JOHNSON H E. An Analytic Approximation for the American Put Price[J]. Journal of Financial and Quan- titative Analysis, 1983,18(01) : 141-148.

二级参考文献8

  • 1孙鹏,张蕾,赵卫东.美式期权定价问题的一类有限体积数值模拟方法[J].山东大学学报(理学版),2007,42(6):1-6. 被引量:4
  • 2BLACK F, SCHOLES M. The pricing of options and corporate liabilities [J].Journal of Political Economy, 1973, 81 : 637- 659.
  • 3HESTON S. A closed-form solution for options with stochastic volatility with applications to bond and currency options [J]. Review Financial Stud, 1993, 6:327-343.
  • 4OXSTERLEE C W. On multigrid for linear complementarity problems with application to American-style options [ J ]. Electron Trans Numer Anal, 2003, 15 : 165-185.
  • 5ZVAN R, FORSYTH P A, VETZAL K R. Penalty methods for American options with stochastic volatility[J]. J Comput Ap- pl Math,1998, 91:199-218.
  • 6IKONEN S, TOIVANEN J. Componentwise splitting methods for pricing American options under stochastic volatility [ J ]. In- ternational Journal of Theoretical and Applied Finance, 2007, 10 (2) :331-361.
  • 7John C Hull.期权、期货及其他衍生产品[M].王勇,索吾林,译.7版.北京:机械工业出版社,2009.
  • 8CHEN X, CHADAM J, JIANG L, et al. Convexity of the exercise boundary of the American put option for no dividend asset [J].Mathematical Finance, 2008, 18( 1 ) : 185-197.

共引文献4

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部