期刊文献+

带有周期传染率的手足口病模型的稳定性分析

Stability Analysis of a Hand-foot-and-mouth Disease Model with Periodic Transmission Rates
下载PDF
导出
摘要 文中建立了带有周期传染率的SEIQRS模型,在引入基本再生数R0后,利用构造适当的Lyapunov函数的方法,讨论了系统平衡点的稳定性.这一研究成果主要体现在:得出HFMD动力系统的全局稳定性由它的基本再生数R0决定,当R0<1时,该动力系统的无病平衡点全局渐进稳定,意味着该HFMD会在一定时期后消亡;当R0>1时,该动力系统至少有一个正的周期解,即该HFMD会演变成为一种流行性疾病. In this paper, it established a SEIQRS model with periodic transmission rates, a{ter the in- troduction of the basic reproductive number, by using the method of constructing suitable Liapunov func- tion, the stability of the equilibrium point is discussed. The results of the study are mainly reflected in. the stability of the HFMD system is determined by its basic reproductive number R0 , as R0 〈1, the dis- ease-free equilibrium of the dynamic system is globally asymptotically stable, the HFMD will die after a period of time; WhenR0 〉1 , the power system has at least one positive periodic solution, the HFMD will evolve into a kind of epidemic disease.
作者 庞丽艳
出处 《岭南师范学院学报》 2015年第6期31-36,共6页 Journal of Lingnan Normal University
基金 国家自然科学基金项目(11361046) 宁夏自然科学基金项目(NZ13215) 宁夏自然科学基金项目(NZ15255) 宁夏高等学校科学研究项目(宁教高【2014】222号(16))
关键词 手足口病(HFMD) 周期传染率 LIAPUNOV函数 Hand-foot-and-mouth disease periodic transmission rate Lyapunov function
  • 相关文献

参考文献2

二级参考文献12

  • 1杨智宏,朱启镕,李秀珠,王晓红,王建设,胡家瑜,唐伟,崔爱利.2002年上海儿童手足口病病例中肠道病毒71型和柯萨奇病毒A组16型的调查[J].中华儿科杂志,2005,43(9):648-652. 被引量:636
  • 2Wong KT.Emerging and re-emerging epidemic encephalitis:a tale of two viruses[J].Neuropathol Appl Neurobiol,2000,26 (4):313-318.
  • 3Kao SJ,Yang FL,Hsu YH,et al.Mechanism of fulminant pulmonary edema caused by enterovirus 71[J].Clin Infect Dis,2004,38 (12):1784-1788.
  • 4[1]Kermark M D. Mokendrick A G. Contributions to the mathematical theory of epidemics[J]. Part I, Proc Roy Soc, A, 1927, 115(5):700-721.
  • 5[2]Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mount J Math, 1979, 9(1):31-42.
  • 6[3]Hethcote H W. Qualititative analyses of communicable disease models[J]. Math Biosci, 1976, 28(3):335-356.
  • 7[4]Capasso V. Mathematical structures of epidemic systems[J]. Lecture notes in biomath[M]. 97 Springer-verlag,1993.
  • 8[5]Hethcote H W, Liu W M, Leven S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Math Biosci, 1987, 25(3):359-380.
  • 9[6]Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42(1):41-61.
  • 10[7]Bailey N T J. The Mathematical Theorey of Infectious Diseases.[M]. London: Griffin, 1975.

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部