期刊文献+

QVIP的广义间隙函数和误差界 被引量:1

Generalized gap functions and error bounds for quasi variational inequalities
下载PDF
导出
摘要 对拟变分不等式,定义广义间隙函数并研究其性质。通过使用广义间隙函数,在所研究拟变分不等式问题的目标函数关于解是强单调、Lipschitz连续的条件时,得到误差界。 In this paper ,it presents the generalized gap functions for quasi variational inequality and studies their properties .The error bounds are obtained when objective function for quasi variational inequality problem is strongly monotones and Lipschitz continuous on solution of quasi variational inequality problem .
出处 《黑龙江工程学院学报》 CAS 2016年第2期46-48,54,共4页 Journal of Heilongjiang Institute of Technology
基金 黑龙江省教育厅资助项目(12521147) 哈师大青年学术骨干资助计划项目(KGB201004) 黑龙江省自然科学基金资助项目(A201410)
关键词 拟变分不等式 间隙函数 误差界 quasi variational inequality gap function error bound
  • 相关文献

参考文献8

  • 1FACCHINEI F,PANG J a Finite dimensional varia- tional inequalities and complementary problems[M]. Vol.I,Springer Series in Operations Research,Apring- er,New york,NY,USA, 2003.
  • 2HARKER P T.Generalized nash games and quasi-vari- ational inequalities[J].European Journal of Operation- al Research, 1991,54(1):81-94.
  • 3FUKUSHIMA M A class of gap functions for quasi- variational inequality problems[J].Journal of industrial and Management Optimization,2007,3(2):165-171.
  • 4KOUICHI Taj i.On gap functions for quasi-variational inequalities[M].Hindawi Pubblishing Corporation Ab- stract and Applies Analysis, 2008, Art: ID531361,7PP.
  • 5GUPTA R,MEHRA A.Gap functions and error bounds for quasi-variational inequalities[J].J Glob Op- tim,2012,53:737-748.
  • 6YAMASHITA N,TAJI K,FUKUSHIMA M.Uncon- strained optimazation reformulations of variational ine- quality problems[J].Journal of Optimization Theory and Applications,1997,92:439-456.
  • 7QU B, WANG C Y,ZHANG J Z.Convergence and er- ror bound of a method for solving variational inequality problems via the generalized D-Gap function[J].Jour- nal of Optimization Theory and Applications, 2003,119:535-552.
  • 8HUANG L R,NG K F.Equivalent optimization formu- lations and error bounds for variational inequality problem[J].Journal of Optimization Theory and Ap- plications, 2005,125:299-314.

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部