期刊文献+

WSN中多节点RSS混合序列聚类算法研究 被引量:1

Clustering Algorithm Research on Mixed Received Signal Strength Sequences of Multiple Nodes on Wireless Sensor Network
下载PDF
导出
摘要 移动锚节点通过接收的节点RSS混合序列聚类确定无标识未知节点个数,RSS混合序列的聚类效果直接决定无线传感器网络节点的定位精度。本文针对EM算法处理RSS高斯混合序列中存在初值敏感的不足,采用三阶段迭代处理方法,对EM算法增加前道和后道处理,K均值作为前道处理改善EM初值选取,贝叶斯信息准则作为后道处理提高聚类的精度。仿真结果表明,本文算法可以成功估算无标识未知节点个数,并且获取精确的接收信号强度。 It confirms number of unknown nodes without identification by dealing with mixed received signal strength sequences achieved by mobile anchor node,the clustering results of the mixed received signal strength directly determines the positioning accuracy of unknown nodes on the wireless sensor network. EM algorithm is sensitive to the initial values. To overcome the drawback above,this paper proposes a three stage iterative processing method,adding front and rear channel to EM algorithm. Kmeans algorithm is used as front processing channel to improve the selection of initial values on EM algorithm. Bayesian information criterion is employed as the rear processing channel to improve the accuracy of the clustering. Finally,the simulation result shows that the proposed algorithm can successfully estimate the number of unknown nodes,and achieve precise received signal strength.
作者 陈树 陆颖
出处 《计算机与现代化》 2016年第5期46-50,共5页 Computer and Modernization
基金 江苏省六大人才高峰基金资助项目(2012-WLW-006)
关键词 接收信号强度 期望最大值算法 K均值 贝叶斯信息准则 received signal strength EM algorithm K-means Bayesian information criterion
  • 相关文献

参考文献16

  • 1Kumar Anil, Karampal. Optimized range-free 3D node lo- calization in wireless sensor networks using firefly algorithm [ C]//2015 IEEE International Conference on Signal Pro- cessing and Communication (ICSC). 2015 : 14-19.
  • 2戴欢.无线传感器网络定位算法及其应用研究[D].无锡:江南大学,2012(11).
  • 3Luo Jun. Range error correction in RSSI-based wireless sensor node localization [ C ]// 2014 IEEE International Confer- ence on Mechatronics and Automation (ICMA). 2014: 379-383.
  • 4Sichitiu M L, Ramadurai V. Localization of wireless sensor networks with a mobile beacon [ C ]//2004 IEEE Interna- tional Conference on Mobile Ad-hoe and Sensor Systems. 2004 : 174-183.
  • 5Chen Yeong-Sheng, Ting Yun-Ju, Ke Chih-Heng, et al. Effi- cient localization scheme with ring overlapping by utilizing mobile anchors in wireless sensor networks[ C]//2010 4th International Conference on Multimedia and Ubiquitous En- gineering (MUE). 2010:1-6.
  • 6Mistry D, Joshi S, Agrawal N. A novel jitter separation method based on Gaussian mixture model [ C ]// 2015 IEEE International Conference on Pervasive Computing (ICPC). 2015:1-4.
  • 7Devika A K, Sumithra M G, Deepika A K. A fuzzy-GMM classifier for muhilingual speaker identification[ C ]// 2014 IEEE International Conference on Communications and Sig- nal Processing (ICCSP). 2014 : 1514-1518.
  • 8Li Yan, Li Lei. A greedy merge learning algorithm for Gauss- ian mixture model[ C ]//2009 IEEE Workshop on Intelli- gent Information Technology Applications. 2009:506-509.
  • 9Rui F, Nandi A K. An enhanced splitting-while-merging algorithm with finite mixture models [ C ]//2013 IEEE In- ternational Conference on Acoustics, Speech and Signal Processing (ICASSP). 2013:3332-3336.
  • 10Zablotskiy S, Pitakrat T, Zablotskaya K, et al. Optimalop- erators of hybrid genetic algorithm for GMM parameter esti- mation[ C ]// Proceedings of 2011 IEEE the 7th Interna- tional Conference on Intelligent Environments. 2011:61- 65.

二级参考文献32

共引文献30

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部