期刊文献+

矩形板结构的振动响应分析

Vibration Response Analysis of Rectangular Plates
下载PDF
导出
摘要 为了建立矩形板在弹性约束边界条件下的振动模型,采用横向位移弹簧、旋转约束弹簧和扭转约束弹簧三种类型的弹簧对模拟边界条件。矩形板结构的振动位移函数采用二维Fourier余弦级数加辅助级数的形式来描述,通过引入辅助项使矩形板结构的振动位移函数适用于任意弹性边界条件。结合Rayleigh-Ritz法和Mindlin理论得到矩形板结构在任意边界条件下振动响应的矩阵表达式。最后进行了数值仿真计算,研究了弹簧刚度变化时矩形板结构的响应规律。 In order to establish the vibrational model of the rectangular plates with elastic restraining boundary condition, three kinds of restraining springs (rotational, torsional and translational springs) along every edge are used to simulate the conditions. The vibration displacements of the plate are sought as the linear combination of a double Fourier cosine series and auxiliary series. Because of these supplementary functions, the vibration displacements can be used by arbitrary elastic boundary conditions. Then Rayleigh-Ritz method based on Mindlin plate theory can give the vibration matrix expression of the rectangular plate. Finally nu- merical analyses are performed, and the spatial distributions of vibration power flow are obtained.
出处 《机械管理开发》 2016年第3期32-35,共4页 Mechanical Management and Development
关键词 弹性约束边界条件 Mindlin理论 改进的Fourier级数 振动响应 elastic restraining boundary condition Mindlin theory improved Fourier series method vibration response
  • 相关文献

参考文献5

  • 1S. Wang. A unified Timoshenko beam B-spline Ray- leigh-Ritz method for vibration and buckling analysis of thick and thin beams and plates[J]. International Jour- nal for Numerical Methods in Engineering, 1997, 40 (3) : 473-491.
  • 2Y. K. Cheung, D. Zhou. Vibrations of moderately thick rectangular plates in terms of a set of static Timo- shenko beam functions[J]. Computers & Structures, 2000,78(6) : 757-768.
  • 3S. H. Hashemi, K. Khorshidi, H. R. D. Taher. Exact acoustical analysis of vibrating rectangular plates with two opposite edges simply supported via Mindlin plate theory[J]. Journal of sound and vibration, 2009, 322 (4/5) .. 883-900.
  • 4钟阳,李锐,田斌.四边固支矩形薄板自由振动的哈密顿解析解[J].应用力学学报,2011,28(4):323-327. 被引量:15
  • 5徐素明,王鑫伟,于殿君.离散奇异卷积法结构分析[J].南京航空航天大学学报,2009,41(6):704-708. 被引量:2

二级参考文献16

  • 1王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 2Wei G T. Discrete singular convolution for the Fokker-Planck equation[J]. J Chem Phys, 1999,110(18): 8930-8942.
  • 3Wei G W. A new algorithm for solving some mechanical problems[J]. Comput Methods Appl Mech Engra, 2001, 190(15/17):2017-2030.
  • 4Wei G W, Zhao Y B, Xiang Y. Discrete singular convolution and its application to the analysis of plate with internal supports. Part 1: theory and algorithm[J]. Int J Numer Meth Engng, 2002, 55 (8) :913-946.
  • 5Zhao Y B, Wei G W. DSC analysis of rectangular plates with non-uniform boundary conditions [J]. Journal of Sound and Vibration, 2005, 255(2):203- 238.
  • 6NgCHW, Zhao YB, WeiGW. Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates[J]. Comput. Methods Appl Mech Engrg, 2004, 193(23/26): 2483-2506.
  • 7Leissa A W. The free vibration of rectangular plate [J]. Journal of Sound and Vibration, 1973, 31(3):257-293.
  • 8Wang Xinwei, Liu Feng, Wang Xinfeng, et al. New approaches in application of differential quadrature method to fourth-order differential equations[J]. Commun Numer Meth Engng, 2005, 21(2):61-71.
  • 9Gorman D J. Free vibration analysis of rectangular plates[M]. New York: Elsevier, 1982.
  • 10Leissa A W. Vibration of plates (NASA SP 160) [M]. Washington, D C: Office of Technology Utilization, 1969.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部