36iaquinta M. Multiple intgerals in the variations and nonlinear elliptic systems[M] caculus of Princeton: Princeton U-niversity Press, 1983.
4B. Stroffolini. On weakly A-harmonic tensors[J]. Studia Mathematics, vol. 114, no. 3, pp. 359-366,2013.
二级参考文献13
1LI Gongbao,MARTIO O. Stability and higher integrability of derivatives of solutions in double obstacle problems [J]. J Math Anal Appl, 2002,272 : 19 -- 29.
2HEINONEN J,KILPELANEN T, MARTIO O. Nonlinear potential theory of degenerate elliptic equations[M]. Oxford: Clarendon Press, 1993.
3LI Gongbao,MARTIO O. Local and global integrability of gradients in obstacle problems[J]. Ann Aead Sci Fenn Ser A I Math,1994,19:25-- 34.
4GIAQUINTA M. Multiple intgerals in the eaculus of variations and nonlinear elliptic systems[M]. Princeton:Princeton U- niversity Press, 1983.
5GAO Hongya,GUO Jing, ZUO Yali, et al. Local regularity result in obstacle problems[J]. Acta Math Sci, 2010,30B( 1 ) : 208--214.
6GAO Hongya,QIAO Jinjing,CHU Yuming. Local regularity and local boundedness results for very weak solutions of ob- stacle problems[J]. J Ineq Appl,2010(1) :878769.
7Li Gongbao, Martio O. Local and global integrability of gradients in obstacle problems [ J ]. Ann Acta Sci Fenn Ser A I Math, 1994,19( 1 ) :25 -34.
8Gao Hongya, Tian Huiying. Local regularity result for solutions of obstacle problems [ J ]. Math Acta (B) ,2004,24 ( 1 ) :71 -74.
9Li Gongbao, Martio O. Stability and higher integrability of derivatives of solutions in double obstacle problems[J]. J Math Anal Appl ,2002,27(1) :19 -29.
10Nolder C A. Hardy-littlewood Theorems for A - harmonic Tensors[ J ]. Illinois J of Math, 1999,43 (4) :613 - 631.