期刊文献+

微分形式障碍问题很弱解的正则性 被引量:1

下载PDF
导出
摘要 本文首先给出微分形式障碍问题很弱解的定义,利用Hodge分解建立了微分形式的弱逆H?lder不等式,从而得到一类微分形式椭圆方程的障碍问题很弱解的正则性。
出处 《山东工业技术》 2016年第12期226-227,共2页 Journal of Shandong Industrial Technology
基金 河北省自然科学基金(A2013209278) 华北理工大学自然科学基金(z201219)
  • 相关文献

参考文献4

二级参考文献13

  • 1LI Gongbao,MARTIO O. Stability and higher integrability of derivatives of solutions in double obstacle problems [J]. J Math Anal Appl, 2002,272 : 19 -- 29.
  • 2HEINONEN J,KILPELANEN T, MARTIO O. Nonlinear potential theory of degenerate elliptic equations[M]. Oxford: Clarendon Press, 1993.
  • 3LI Gongbao,MARTIO O. Local and global integrability of gradients in obstacle problems[J]. Ann Aead Sci Fenn Ser A I Math,1994,19:25-- 34.
  • 4GIAQUINTA M. Multiple intgerals in the eaculus of variations and nonlinear elliptic systems[M]. Princeton:Princeton U- niversity Press, 1983.
  • 5GAO Hongya,GUO Jing, ZUO Yali, et al. Local regularity result in obstacle problems[J]. Acta Math Sci, 2010,30B( 1 ) : 208--214.
  • 6GAO Hongya,QIAO Jinjing,CHU Yuming. Local regularity and local boundedness results for very weak solutions of ob- stacle problems[J]. J Ineq Appl,2010(1) :878769.
  • 7Li Gongbao, Martio O. Local and global integrability of gradients in obstacle problems [ J ]. Ann Acta Sci Fenn Ser A I Math, 1994,19( 1 ) :25 -34.
  • 8Gao Hongya, Tian Huiying. Local regularity result for solutions of obstacle problems [ J ]. Math Acta (B) ,2004,24 ( 1 ) :71 -74.
  • 9Li Gongbao, Martio O. Stability and higher integrability of derivatives of solutions in double obstacle problems[J]. J Math Anal Appl ,2002,27(1) :19 -29.
  • 10Nolder C A. Hardy-littlewood Theorems for A - harmonic Tensors[ J ]. Illinois J of Math, 1999,43 (4) :613 - 631.

共引文献3

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部