期刊文献+

Canonical Metrics on Generalized Cartan-Hartogs Domains

Canonical Metrics on Generalized Cartan-Hartogs Domains
原文传递
导出
摘要 Abstract In this paper, the author considers a class of bounded pseudoconvex domains, i.e., the generalized Cartan-Hartogs domains Ω(μ, m). The first result is that the natural Kahler metric gΩ(μ,m) of Ω(μ, m) is extremal if and only if its scalar curvature is a constant. The second result is that the Bergman metric, the Kahler-Einstein metric, the Caratheodary metric, and the Koboyashi metric are equivalent for Ω(μ, m).
作者 Yihong HAO
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2016年第3期357-366,共10页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(No.11371257)
关键词 Canonical metric Extremal metric Comparison theorem GeneralizedCartan-Hartogs domains Cartan-Hartogs域 度量 广义 标量曲率 爱因斯坦 拟凸域 有界 极值
  • 相关文献

参考文献29

  • 1Arazy, J., A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Conternp. Math., 185, 1995, 7-65.
  • 2Berman, R. J., K-polystability of Q-Fano varieties admitting Khler-Einstein metrics, 2012. arXiv: 1205.6214.
  • 3Calabi, E., Extremal Kiihler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., Vol. 102: Princeton Univ. Press, Princeton, N. J., 1982, 259-290.
  • 4Calabi, E., Extremal Khler Metrics II, Differential Geometry and Complex Analysis, Springer-Verlag: Berlin Heidelberg, 1985, 95-114.
  • 5Cartan, E., Sur les domaines borns homogenes de l'espace de n variables complexes, Abh. Math. Sere. Univ. Hamburg, 11(1), 1935, 116-162.
  • 6Chang, S. C., On the existence of nontrivial extremal metrics on complete noncompact surfaces, Math. Ann., 324(3), 2002, 465-490.
  • 7Chen, X. and Tian, G., Uniqueness of extremal Khler metrics, C. R. Math. Acad. Sci. Paris, Set., 340(4) 2005. 287-290.
  • 8Cheng, S. Y. and Yau, S. T., On the existence of a complete Khler metric on non-compact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math., 33(4), 1980, 507 544.
  • 9Deng, F., Guan, Q. and Zhang, L., Some properties of squeezing functions on bounded domains, Pacific J. Math., 25'(2), 2012, 319-341.
  • 10Deng, F., Guan, Q. and Zhang, L., Properties of squeezing functions and global transformations of bounded domains. 2013. arXiv: 1302.5307.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部