期刊文献+

北京市西山地区地下水数值模拟及预测 被引量:23

Numerical simulation of groundwater flow for Xishan area in Beijing
下载PDF
导出
摘要 北京西山地区地下水资源丰富,水质优良,是北京市重要的地下水供水水源地之一。长期过量开采地下水已经引起了区域地下水水位下降等环境问题。南水北调客水进京后,将会改变区域用水结构,逐步实现对含水层系统的涵养目的。采用有限差分方法进行区域含水层系统数值模拟,分析不同开采条件下含水层系统响应特征。取得如下认识:西山地区地下水开采总量达到3.546 2×108m3/a,为达到可持续开采目的,需要将开采量压至2.798 8×108m3/a,实现采补平衡;维持现状开采至2030年,岩溶水水位下降22m,第四系承压水水位下降约28m,部分地区第四系潜水含水层出现疏干现象;南水北调进京后,按照规划压采方案实施,2030年末岩溶水水位平均恢复约5m,第四系承压水水位下降约6m。区域岩溶含水层恢复贮水0.185 4×108m3,第四系含水层系统贮水损失2.782 8×108m3。 The Xishan area,located in western Beijing,is one of the most important well fields supply the water for the city. The long-term groundwater overdraft has caused the regional groundwater depletion and other environmental issues. The South-to-North Water Diversion Project( SNWTP) may partly change the water-use scenario and increase the aquifer system storage. A numerical groundwater-flow model of Xishan area was developed to synthesize estimates of water-balance components and hydrologic properties,and to analyze the response of aquifer system to the predictive scenarios. The following results were obtained:( 1)Sustainable yield may be accomplished by reducing current abstraction of aquifer system from 3. 546 2 ×10^8m^3/ a to 2. 798 8 × 10^8m^3/ a;( 2) The average drawdown of karst and quaternary confined aquifer are 22 and 28m to the end of 2030 with current pumping rates( hypothetical scenario 1). Localized cells near the pumping centers will go dry by the year 2028;( 3) Under the hypothetical scenario 3,a projected decrease in abstraction rates from the entire system during 2019—2030 cause the water level of karst aquifer to rises about5 m. However,the water level of quaternary confined aquifer will continue to decrease with the maximum 6m at the end of 2030. The estimated storages of karst aquifer was increased by 0. 185 4 × 10^8m^3. And quaternary aquifer system will loss 2. 782 8 × 10^8m^3.
出处 《水文地质工程地质》 CAS CSCD 北大核心 2016年第3期29-36,共8页 Hydrogeology & Engineering Geology
基金 国家自然科学基金(41201376) 北京岩溶水资源勘查评价工程项目(BJYRS-KC-01-03)
关键词 北京 西山 地下水 数值模拟 南水北调 Beijing Xishan Groundwater Numerical simulation South-to-North Water Diversion Project
  • 相关文献

参考文献12

  • 1Sun N Z. Applications of numerical methods to simulate the movement of contaminants in groundwater [ J]. Environmental Health Perspectives, 1989, 83 : 97 - 115.
  • 2薛禹群,吴吉春.地下水数值模拟在我国——回顾与展望——为《水文地质工程地质》创刊40年而作[J].水文地质工程地质,1997,24(4):21-24. 被引量:59
  • 3Sufi A B, Latif M, Skogerboe G V. Simulating skimming well techniques for sustainable exploitation of groundwater[ J]. Irrigation and Drainage Systems, 1998, 12(3) : 203 -226.
  • 4Scanlon B R, Mace R E, Barrett M E, et al. Can we simulate regional groundwater flow in a karst systemusing equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA[ J]. Journal of Hydrology, 2003, 276( 1 ) : 137 - 158.
  • 5Ely D M, Bachmann M P, Vaccaro J simulation of groundwater flow for the basin aquifer system, Washington [ R ] Survey, 2011.
  • 6J. Numerical Yakima River US Geological Marin L E, Perry E C, Essaid H I, et al. Hydrogeological investigations and numerical simulation of groundwater flow in the karstic aquifer of northwestern Yucatan, Mexico [ J ]. Coastal Aquifer Management-Monitoring, Modeling, and Case Studies, 2001: 257- 274.
  • 7王丽亚,刘久荣,周涛,叶超,李文鹏,周仰效.北京平原地下水可持续开采方案分析[J].水文地质工程地质,2010,37(1):9-17. 被引量:26
  • 8Ely D M, Burns E R, Morgan D S, et al. Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington[ RI US Geological Survey, 2014.
  • 9Hu L T, Chen C X, Jiao J J, et al. Simulated groundwater interaction with rivers and springs in the Heihe river basin[ J]. Hydrological processes, 2007, 21 (20) : 2794 - 2806.
  • 10王丽亚,郭海朋.连续干旱对北京平原区地下水的影响[J].水文地质工程地质,2015,42(1):1-6. 被引量:19

二级参考文献20

  • 1贾瑞亮,周金龙,李巧.我国气候变化对地下水资源影响研究的主要进展[J].地下水,2012,34(1):1-4. 被引量:5
  • 2王新娟,许苗娟,周训.北京市西郊区地表水地下水联合调蓄模型研究[J].勘察科学技术,2005(5):16-19. 被引量:10
  • 3刘春蓁,刘志雨,谢正辉.地下水对气候变化的敏感性研究进展[J].水文,2007,27(2):1-6. 被引量:30
  • 4北京市政府,北京市城市总体规划(2004-2020年)[R/OL].[2005-04-15]http://www.bjghw.gov.cn/web/static/catalogs/catalog_233/233.html.
  • 5北京市水务局,北京市发改委.北京市“十一五”时期水资源保护及利用规划[S/OL].[2006-09-08]http://www.bjpc.gov.cn/zt/2007jnxc/07jnz-zebj/200705/t177666.him.
  • 6陈志宏.地下水数值模拟模型在研究地下水恢复中的应用[R].北京:北京市地质工程勘察院,2008.
  • 7北京市地质工程勘察院.北京市潮白河牛栏山地区水资源地下调蓄试验研究报告[R].北京,1986.
  • 8北京市用水调研课题组.北京市用水调研与需水预测研究报告[R].,2002.1-19.
  • 9All R, McFarlane D, Varma S, et al. Potential climate change impacts on groundwater resources of south-western Australia [ J ]. Journal of Hydrology,2012, 475:456 -472.
  • 10Waibel M S, Gannett M W, Chang H, et al. Spatial variability of the response to climate change in regional groundwater systems-Examples from simulations in the Deschutes Basin, Oregon [ J]. Journal of Hydrology, 2013, 486:187-201.

共引文献100

同被引文献249

引证文献23

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部