期刊文献+

基于MFCC与共振峰的声纹识别算法研究

A Voiceprint Recognition Algorithm Based on MFCC and Formants
下载PDF
导出
摘要 在声纹识别系统中,由于特征参数MFCC不能实现高效的识别,提出了将MFCC和共振峰相结合的提取方法。并在此基础上引用了一阶差分ΔMFCC和二阶差分ΔΔMFCC,进而将MFCC、ΔMFCC、ΔΔMFCC和共振峰有机结合起来进行声纹识别实验,说话人模型采用的是高斯混合模型。实验结果表明提取混合特征参数MFCC、ΔMFCC、ΔΔMFCC与共振峰进行声纹识别时,识别率大大提高。 Because MFCC can't achieve efficient voiceprint recognition, a feature extraction method by combining MFCC and Formants is proposed. And on the basis cited the A MFCC and AA MFCC, then MFCC, A MFCC, AA MFCC and Formants are combined to conduct the voiceprint recognition experiment, the speaker models use the Gaussian Mixture Modeling. The ex- periment results show that the extraction of mixture parameters MFCC, A MFCC, AA MFCC and Formants for the voiceprint recognition, the recognition rate improves greatly.
作者 王正创 WANG Zheng-ehuang (College of Mechanical and Electronic Engineering, Chaohu University, Chaohu 238000,China)
出处 《电脑知识与技术》 2016年第2期188-190,共3页 Computer Knowledge and Technology
基金 巢湖学院基金项目(XLZ-201505)
关键词 MFCC 共振峰 GMM MFCC formants GMM
  • 相关文献

参考文献6

  • 1Yang Yang, Wu Ren, Zhang Hui. The research of voiceprint recognition based on genetic optimized RBF neural networks . 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE). Washington, United States: IEEE Computer Society,2012.704-708.
  • 2Tomi Kinnunen, Haizhou Li. An overview of text-independent speaker recognition: From features to supervectors. Speech C ommuni cation, 2010,52( 1 ): 12-40.
  • 3Ahmed Mezghani, Douglas O' Shaughnessy. Speaker Verifica- tion Using a New Representation Based on a Combination of MFCC and Formants[C]. Canadian Conference on Electrical and Computer Engineering. United States: Institute of Electri- cal and Electronics Engineers Inc.,2005.1461 -1464.
  • 4Zhao Yanping, Zhao Xiaohui, Wang Bo. A speech enhance- ment method employing sparse representation of power spec- tral density [J]. Journal of Information and Computational Sci- enee,2013,10(6):1705-1714.
  • 5张震,王化清.语音信号特征提取中Mel倒谱系MFCC的改进算法[J].计算机工程与应用,2008,44(22):54-55. 被引量:29
  • 6宫朝辉,刁麓弘.改进共振峰提取的语音端点检测[J].计算机辅助设计与图形学学报,2013,25(8):1230-1236. 被引量:4

二级参考文献15

  • 1刘红星,戴蓓蒨,陆伟.基于共振峰谐波能量的语音端点检测[J].清华大学学报(自然科学版),2008,48(S1):754-759. 被引量:11
  • 2张雄伟,陈亮,杨吉斌.现代语音技术及应用[M].北京:机械工业出版社.2003.
  • 3Fakhr W,Salam A A,Hamdy N.Enhancement of mismatched conditions in speaker recognition for multimedia applications [J].IEEE International Conference on Acoustics,Speech,and Signal Processing, 2004.
  • 4王炳锡,屈丹,彭煊.实用语音识别基础[M].北京:国防工业出版社,2004:264-286.
  • 5Srinivasant K,Gersho A.Voice activity detection for cellularnetworks [C] //Proceedings of IEEE Speech CodingWorkshop.Washington D C:IEEE Computer Society Press,1993:85-86.
  • 6Rabiner L R.Fundamentals of speech recognitions [M].Englewood Cliffs:Prentice-Hall,1993.
  • 7Shen J L,Hung J W,Lee L S.Robust entropy-basedendpoint detection for speech recognition in noisyenvironments [C] //Proceedings of International Symposiumon Spoken Language Processing.Washington D C:IEEEComputer Society Press,1998 :96-98.
  • 8Jia C,Xu B.An improved entropy-based endpoint detectionalgorithm [C] //Proceedings of International Symposium onSpoken Language Processing.Washington D C:IEEEComputer Society Press,2002 :96-102.
  • 9Kawahara H,Masuda-Katsuse I,de Cheveigne A.Restructuring speech representations using a pitch-adaptivetime-frequency smoothing and an instantaneous-frequency-based F0 extraction:possible role of a repetitive structure insound [J].Speech Communication,1999,27(3/4):187-207.
  • 10Hong L,Wan Y F,Jain A K.Fingerprint imageenhancement,algorithm and performance evaluation [J].IEEE Transactions on Pattern Analysis and MachineIntelligence,1998,20(8):777-789.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部