期刊文献+

基于矩形特征的无空间参考DEM图像模糊匹配 被引量:2

Fuzzy matching of DEM image without spatial reference based on rectangle features
下载PDF
导出
摘要 多源、多时相与多尺度DEM的匹配是DEM(Digital Elevation Model)应用中的关键技术。对无空间参考的DEM进行匹配时,若特征点不足或匹配DEM之间的分辨率、地形特征等差异较大,已有的DEM匹配技术往往难以成功。为此,这里提出了基于矩形特征的模糊匹配方法。首先利用矩形特征构建了五种图像相似度指标BRFSI并统计分析了各个指标的分类性能;然后,使用Gentle AdaBoost算法对大量样本进行训练后,得到了用于判定"匹配"与"非匹配"的分类器;最后建立了进行DEM图像模糊匹配的匹配模型。经过四种典型数据验证,该方法很好地解决了无空间参考DEM匹配中特征点不足、DEM之间相似度较低的难点问题,为进一步的DEM精匹配提供了良好的初始条件。 One of the key technologies of DEM application is multi-source,multi-temporal and multi-scale DEM matching.The existing DEM matching technologies usually fail when DEM is matched without spatial reference because of the insufficient feature points or the vast differences of resolution,terrain features and some others.Therefore,the method,fuzzy matching of DEM without spatial reference based on rectangle features,is proposed in this paper.First,five images similarity indicators were constructed based on rectangle features and then the statistical analysis was used respectively in every indicator's classification performance.Second,the classifier,to discriminate whether matched or not,was obtained after using Gentle AdaBoost algorithm training massive samples.Finally,a model of DEM image fuzzy matching was established.The method used in this paper shows a capability in solving two difficult problems,the lack of feature points when DEM is matched without spatial reference and low similarity between DEM data,by verifying of four typical data.All these above may provide precise DEM matching a fine initial condition.
出处 《物探化探计算技术》 CAS CSCD 2016年第2期264-274,共11页 Computing Techniques For Geophysical and Geochemical Exploration
基金 国家自然科学基金资助项目(批准号:41372340) 国土资源部地学空间信息技术重点实验室开放基金资助项目(KLGSIT2014-05)
关键词 矩形特征 无空间参考DEM GENTLE ADABOOST算法 分类器 图像模糊匹配 rectangle features DEM without spatial reference Gentle AdaBoost algorithm classifier imagefuzzy matching
  • 相关文献

参考文献19

  • 1ROSENHOLM D,TORELEGARD K.Three dimensional Absolute Orientation of Stereo Models Using Digital Elevation Models[J].Photogrammetric Engineering and Remote Sensing,1988,54(10):1385-1389.
  • 2ZHINLIN LI,ZHU XU,MINYI CEN,et al.Robust Surface Matching for Automated Detection of Local Deformations Using Least-Median-of-Squares Estimator[J].Photogram-metric Engineering and Remote Sensing,2001,67(11):1283-1292.
  • 3张同刚,岑敏仪,冯义从,杨容浩,任自珍.采用截尾最小二乘估计的DEM匹配方法[J].测绘学报,2009,38(2):144-151. 被引量:12
  • 4吴晓萍,杨武年,佘金星,杨彦通,李国明.等高线与地形特征点云在矿山位置快速定位中的应用[J].科学技术与工程,2014,22(28):247-251. 被引量:1
  • 5佘金星,杨武年,吴晓萍,杨彦通,戴晓爱.基于SURF算法的无坐标矿山空间位置匹配方法[J].国土资源科技管理,2014,31(6):103-109. 被引量:1
  • 6PAUL VIOLA,MICHAEL J.JONES.Robust Real-time Object Detection[J].International Journal of Computer Vision,2004,57(2):137-154.
  • 7PAUL VIOLA,MICHAEL J.JONES.Rapid Object Detection using a Boosted Cascade of Simple Features[C].Proceedings of the 2001IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001,1:511-518.
  • 8PAUL VIOLA,MICHAEL J.JONES.Robust Real-Time Face Detection[J].International Journal of Computer Vision 2004,57(2):137–154.
  • 9QING CHEN,NICOLAS D.GEORGANAS,EMIL M.PETRIU.Hand Gesture Recognition Using Haar-Like Features and a Stochastic Context-Free Grammar[J].IEEE Transactions on Instrumentation and Measurement.2008,57(8):1562-1571.
  • 10文学志,方巍,郑钰辉.一种基于类Haar特征和改进AdaBoost分类器的车辆识别算法[J].电子学报,2011,39(5):1121-1126. 被引量:87

二级参考文献80

共引文献392

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部