期刊文献+

逼近三次B样条导矢曲线的四次Hermite插值样条

Quartic Hermite Interpolation Spline Determined by Approximating the Derivative of Cubic B-Spline Curve
下载PDF
导出
摘要 给出了形状可调的四次Hermite插值样条曲线的构造方法。四次样条曲线可提供额外的自由度用于调整曲线具有合理形状。利用导矢逼近使得四次Hermite样条曲线具有与三次B样条曲线相似的形状。通过最小化曲线间的导矢误差给出了确定自由度的方法,提出了四次Hermite插值样条曲线的构造方法。该方法增加了自由度控制曲线形状能更好满足保形要求。最后以实例对构造的四次Hermite样条曲线和标准三次Hermite插值样条曲线进行了比较。 A method is developed to construct adjustable quartic Hermite interpolating spline curves. The extra degree of freedom can be used to adjust the quartic curve to a reasonable shape. The interpolation based on the approximation of derivatives is discussed to make quartic Hermite spline with similar shape feature of cubic B-spline. The degree freedom is determined by minimizing the proximity, which is defined by the squared difference of the derivatives of the curves. The shape of the proposed quartic spline can be adjusted to satisfy the shape-preserving requirement by changing the values of degree of freedom. Four numerical examples are presented to compare the proposed quartic Hermite spline with the standard cubic Hermite spline.
出处 《图学学报》 CSCD 北大核心 2016年第2期149-154,共6页 Journal of Graphics
关键词 Hermite插值样条 保形插值 形状可调 Hermite interpolating spline shape-preserving interpolation shape adjustable
  • 相关文献

参考文献13

  • 1Ahlberg J H, Nilson E N, Walsh J L. The theory of splines and their applications [M]. New York: Academic Press, 1967: 1.
  • 2Hail X L. A degree by degree recursive construction of Hermite spline interpolants [J]. Journal of Computational and Applied Mathematics, 2009, 225(225): 113-123.
  • 3Zhu Y P, Han X L, Han J, et al. Quartic trigonometric B6zier curves and shape preserving interpolation curves [J]. Journal of Computational Information Systems, 2012, 8(2): 905-914.
  • 4Mtihlbach G One sided Hermite interpolation by piecewise different generalized polynomials [J]. Journal of Computational and Applied Mathematics, 2005, 196(1) 285-298.
  • 5Agarwal R P, Wong P J Y. Error inequalities in polynomial interpolation and their applications [M]. Dordrecht: Kluwer Academic Publishers, 2012: 217-280.
  • 6Kong J H, Jeong S P, Lee S, et al. C1 Hermite interpolation with simple planar PH curves by speed reparametrization [J]. Computer Aided Geometric Design, 2008, 25(4): 214-229.
  • 7Goodman T N T, Shape preserving interpolation by curves [C]//Algorithrns for Approximation W. Huddersfield: The University of Huddersfield Press, 2002: 24-35.
  • 8樊敏,康宝生.一类Hermite型矢量插值C^1细分曲线的几何特征生成[J].工程图学学报,2006,27(3):79-83. 被引量:1
  • 9Yong J H, Cheng F H. Geometric Hermite curves with minimum strain energy [J]. Computer Aided Geometric Design, 2004, 21(3): 281-301.
  • 10HOllig K, Koch J. Geometric Hermite interpolation with maximal order and smoothness [J]. Computer Aided Geometric Design, 1996, 13(8): 681-695.

二级参考文献18

  • 1王远军,曹沅.非均匀三次参数样条曲线的能量最优光顺算法[J].计算机辅助设计与图形学学报,2005,17(9):1969-1975. 被引量:7
  • 2苏步青.计算几何[M].上海:上海科技出版社,1982.121-141.
  • 3Schoenberg I.J.. Contributions to the problem of application of equidistant data by analytic functions. Quart. Appl. Math., 1946, 45~99
  • 4Farin G.. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. New York: Academic Press, 1989, 111
  • 5Ahlberg J.H., Nilson E.N., Walsh J.L.. The Theory of Splines and Their Applications. New York: Academic Press, 1967, 51
  • 6de Boor C.. A Practical Guide to Splines. New York: Springer Verlag, 1978, 318
  • 7Faux I.D., Pratt M.J.. Computational Geometry for Design and Manufacture. Chichester: Ellis Horwood Ltd., 1979, 176
  • 8Su Bu-Qing, Liu Ding-Yuan.Computer Geometry. Shanghai: Shanghai Academic Press,1982, 29-32(in Chinese)(苏步青,刘鼎元.计算几何.上海:上海科学技术出版社, 1982, 29-32)
  • 9Hyman J.M.. Accurate monotonicity preserving cubic interpolation. SIAM J. Sci. Statist. Comput., 1983, 4(4): 645~654
  • 10Delbourgo R., Gregory J.A.. Shape preserving piecewise rational quadratic interpolation. SIAM J. Sci. Statist. Comput., 1985, 6(4): 967~976

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部