期刊文献+

融合Gabor特征与投影字典对学习的人脸识别算法

Face Recognition Methods Fusing Gabor Feature and Projective Dictionary Pair Learning
下载PDF
导出
摘要 为了获得更好的人脸特征,有效地提高算法的识别率,提出了一种联合Gabor特征与投影字典对学习的人脸识别算法G-DPL。算法使用Gabor小波提取人脸图像的局部特征,对特征向量使用PCA与LDA的方法进行降维。将投影字典对学习算法与降维后的Gabor特征融合,然后进行分类识别。提出的G-DPL算法在ORL库上整体识别率达到99.00%,特征维数为39维。在AR库上识别率达到96.14%,特征维数为99维。提出的G-DPL算法在占用较少空间的同时能够获得更高的识别率,对实际应用具有一定的参考价值。 In order to obtain better face features and enhance the recognition rate of algorithm, a face recognition algorithm based on Gabor feature and projective dictionary pair learing named G-DPL is proposed in this paper. The local feature of face image are extracted by Gabor wavelet and PCA and LDA scheme is used to reduce the feature dimension. Projective dictionary pair learning algorithm and dimensionality reduced Gabor feature are fused to identify the classification. The recognition rate of G-DPL algorithm can reach 99.00% under ORL database. Feature dimensionality is 39. G-DPL can reach 96.14% on AR database. Feature dimensionality is 99. The proposed G-DPL algorithm can obtain higher recognition rate while taking up less space, which has certain reference value for practical application.
出处 《图学学报》 CSCD 北大核心 2016年第2期214-217,共4页 Journal of Graphics
关键词 人脸识别 GABOR 投影字典对 face recognition Gabor projective dictionary pair
  • 相关文献

参考文献13

  • 1Turk M, Pentland A. Eigenfaces for recognition [J]. Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 2Belhtmeur P N, Hespanha J P, Kriengman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection [J]. Pattern Analysis and Machine Intelligence, 2013, 19(7): 711-720.
  • 3Gao S H, Kui J, Zhuang L S, et al. Neither global nor local: regularized patch-based representation for single sample per person face recognition [J]. International Journal of Computer Vision, 2015, 111(3): 365-383.
  • 4陈皓,霍星.视频监控中人脸识别算法稳定性的改进[J].工程图学学报,2011,32(6):53-56. 被引量:4
  • 5Liu C J, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition [J]. Image Processing, 2002, 11(4): 467-476.
  • 6Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [J]. Pattern Analysis and Machine Intelligence, 2009, 31 (2): 210-227.
  • 7Zhang L, Yang M, Feng X C. Sparse representation or collaborative representation: which helps face recognition? [C]//IEEE International Conference on Computer Vision. New York: IEEE Press, 2011: 471-478.
  • 8Yang M, Zhang L, Feng X C, et al. Fisher discrimination dictionary learning for sparse representation [J]. Computer Vision, 2014, 109(3): 209-232.
  • 9Gu S H, Zhang L, Zuo W M, et al. Projective dictionary pair learning for pattern classification [J]. Neural Information Processing Systems, 2014, 1: 793-801.
  • 10Lee T S. Image representation using 2d Gabor wavelets [J]. Pattern Analysis and Machine Intelligence, 1996, 18(10): 959-971.

二级参考文献28

  • 1鲁广英,潘静,庞彦伟.一种新颖的基于Gabor-LDA的人脸识别方法[J].工程图学学报,2006,27(4):120-124. 被引量:5
  • 2陈立珍,崔国勤,李卓.基于子空间增量学习的视频中人脸图像检索[J].计算机辅助设计与图形学学报,2007,19(9):1119-1125. 被引量:2
  • 3Zhao W, Chellappa R, Phillips P J, et al. Face recognition: a literature survey [J]. ACM Computing Surveys, 2003, 35(4): 399-458.
  • 4Everingham Mark, Zisserman Andrew. Identifying individuals in video by combining 'Generative' and discriminative head models [C]//Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, 2005:1103-1110.
  • 5Arandjelovic Ognjen, Zisserman Andrew. Automatic face recognition for film character retrieval in feature-length films [C]//Proceedings of the IEEE Conference on Computer Vision and Pattem Recognition, San Diego, 2005: 860-867.
  • 6Sivic Josef, Everingham Mark, Zisserman Andrew. Person spotting: video shot retrieval for face sets [C]//Proceedings of International Conference on Image and Video Retrieval, Singapore, 2005: 226-236.
  • 7刘瑾,徐可欣,陈小红,吴萍,赵学玲.采用图像融合技术的多模式人脸识别[J].工程图学学报,2007,28(6):72-78. 被引量:10
  • 8Huang K,Aviyente S. Sparse representation for signal classification[A].2006.
  • 9Wright J,Yang A Y,A Ganesh. Robust face recognition via sparse representation[J].IEEE Transactions on Pattem Analysis and Machine Intelligence,2009,(02):210-227.
  • 10Gao Shenghua,Tsang I W,Chia L. Kernel sparse representation for image classification and face recognition[A].2010.1-14.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部