期刊文献+

多级字典学习的图像超分辨率算法 被引量:3

Image super-resolution algorithm based on multi-level dictionaries learning
下载PDF
导出
摘要 改进单级字典学习的图像超分辨率算法,给出一种多级字典学习的图像超分辨率算法。通过多对字典的训练,记录不同层级退化图像和原始高分辨率图像之间的关系,由多对字典预测给定低分辨率图像不同层级丢失的高频信息,将预测出的高频信息与给定的低分辨率图像相加,得到逐级增强的高分辨率图像。在训练图像集相同的条件下,对于无噪声且没有压缩的低分辨率图像,改进算法相比单级字典学习的图像超分辨率算法,恢复出的高分辨率图像的峰值信噪比可平均提高约0.6dB。 The image super-resolution algorithm based on sigle-stage dictionaries learning is improved and an image super-resolution algorithm based on multi-level dictionaries is proposed.The relationship between different levels of the degraded image and the original high resolution images is recorded by training the multiple dictionaries.The multiple training dictionaries are used to predict the different levels high-frequency information lost in the given low resolution image.Add the predict high-frequency information to the given low resolution image and acquire the high resolution image with quality enhanced progressively.In conditions with the same training image set,for the noiseless and uncompressed low resolution images,the revised algorithm can recover high resolution images that the peak signal to noise ratio improves 0.6dB in average,compared to the image super-resolution algorithm based on single-stage dictionaries.
出处 《西安邮电大学学报》 2016年第3期32-37,共6页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金资助项目(61340040 61202183 61102095)
关键词 图像超分辨率 稀疏表示 字典训练 image super-resolution sparse representation dictionary training
  • 相关文献

参考文献14

  • 1范九伦,王彦梓,徐健,武晓敏.基于核典型相关分析的图像放大算法[J].西安邮电大学学报,2015,20(2):52-57. 被引量:2
  • 2XU J,CHANG Z G,FAN J L,et.al.Noisy Image Magnification with Total Variation Regularization and Order-changed Dictionary Learning[J/OL].Journal of Electronic Imaging,2015,24(1):13039-1-29[2015-10-11].http://asp.eurasipjournals.springeropen.com/articles/10.1186/s13634-015-0225-y.
  • 3ROMANO Y,PROTTER M,ELAD M.Single Image Interpolation via Adaptive Non-Local Sparsity-Based Modeling[J/OL].IEEE Transactions on Image Processing,2014,20(2):3085-3098[2015-10-11].http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6819019.DOI:10.1109/TIP.2014.2325774.
  • 4CHEN S L,HUANG H Y,LUO C H.A Low-Cost High-Quality Adaptive Scalar for Real-Time Multimedia Applications[J/OL].IEEE Transactions on Circuits and Systems for Video Technology,2011,21(11):1600-1611[2015-10-11].http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5734808.DOI:10.1109/TCSVT.2011.2129790.
  • 5WANG Q,WARD R K.A New Orientation-Adaptive Interpolation Method[J/OL].IEEE Transactions on Image Processing,2007,16(4):889-900[2015-10-11].http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4130438.DOI:10.1109/TIP.2007.891794.
  • 6BRUCKSTEIN A M,DONOHO D L,ELAD M.From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images[J/OL].Society for Industrial and Applied Mathematics Review,2009,51(1):34-81[2015-10-11].http://epubs.siam.org/doi/abs/10.1137/060657704.DOI:10.1137/060657704.
  • 7ELAD M.Sparse and Redundant Representations:From Theory to Applications in Signal and Image Processing[M/OL].New York:Springer,2010:172-181[2015-10-11].http://link.springer.com/book/10.1007/978-1-4419-7011-4.
  • 8YANG J C,WRIGHT J,HUANG T S,et.al.Image super-resolution via sparse representation[J/OL].IEEE Transaction on Image Processing,2010,19(11):2861-2873[2015-10-11].http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5466111.DOI:10.1109/TIP.2010.2050625.
  • 9SEKAR K,DURAISAMY V,REMIMOL A M.An approach of image scaling using DWT and bicubic interpolation[C/OL]//International Conference on Green Computing Communication and Electrical Engineering.Coimbatore:IEEE,2014:1-5[2015-10-11].http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6922406.DOI:10.1109/ICGCCEE.2014.6922406.
  • 10SHI H J,WARD R.Canny edge based image expansion[C/OL]//IEEE International Symposium on Circuits and Systems.USA AZ Phoenix-Scottsdale:IEEE,2002:I-785-788[2015-10-11].http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1009958.DOI:10.1109/ISCAS.2002.1009958.

二级参考文献15

  • 1贺云辉,赵力,邹采荣.一种基于KCCA的小样本脸像鉴别方法[J].应用科学学报,2006,24(2):140-144. 被引量:8
  • 2Hotelling H. Relation between two sets of variates EJ]. Biometrika, 1936, 28(3/4): 312-377.
  • 3Huang Hua, He Huiting, Fan Xin, et al. Super-reso- lution of human face image using canonical correlation analysis[J]. Pattern Recognition, 2010, 43(7)~ 2532- 2543.
  • 4An L, Bhanu B. Face image super-resolution using 2D CCA[J/OL]. Signal Processing, 2014, 103(10) :184- 194.
  • 5http://www, ee. uer. edu/~ lan/papers/AnNeu- rocomputing14, pdf. An L, Thakoor N, Bhanu 13. Vehicle logo super-reso- lution by canonical correlation analysis[C]//IEEE In- ternational Conference on Image Processing, Orlando, FL.. IEEE, 2012: 2229-2232.
  • 6Chen Xiaoxuan, Qi Churl Nonlinear neighbor embed- ding for single image super-resolution via kernel map- ping[J]. Signal Processing, 2014,94(1) ~ 6-22.
  • 7Irani M, Peleg S. Irani M, by image registration EJ]. et al. Improving resolution CVGIP~ Graphical Models and Image Processing, 1991, 53(3): 231-239.
  • 8Yang Jianchao, Wright J, Huang T, et al. Image su- per-resolution via sparse representation I-J1. IEEE Transactions on Image Processing, 2010, 19 (11 : 2861-2873.
  • 9Hou H S, Andrews H C. Cubic splines for image in- terpolation and digital filtering[-J~. IEEE Transactions on Signal Processing, 1978, 26(6); 508-517.
  • 10Chang Hong, Yeung D-Y, Xiong Yimin. Super-reso-lution through neighbor embedding[C]//IEgE Com- puter Society Conference on Computer Vision and Pat- tern Recognition, Washinqton, DC, USA.. IEEE, 2004, 1: 275-282.

共引文献1

同被引文献6

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部