期刊文献+

神经网络与贝叶斯滤波器在换道预测中的应用 被引量:4

The Application of Bayesian Filter and Neural Networks in Lane Changing Prediction
下载PDF
导出
摘要 为提高车辆在换道过程中的行车安全性。提出一种基于BP神经网络与贝叶斯滤波器的换道意图预测方法,通过车道线传感器、方向盘转角传感器和车身CAN总线采集相关表征参数,将其作为BP神经网络输入数据,对驾驶人换道意图进行初步预测,BP神经网络输出结果作为贝叶斯滤波器输入数据,对BP神经网络预测结果作进一步修正。对模型利用真实换道数据进行训练和检测,结果表明此模型的预测准确率达到91.38%,相较于单一的BP神经网络模型,预测准确率提高了6%,并且具有更强的通用性。 In order to improve safety during lane change, we proposed lane change intent prediction method based on neural networks and Bayesian filters. The method uses the lane line sensor, steering wheel angle sensor and in-vehicle CAN bus acquisition characterization parameters. The above acquisition parameters as the neural network input data, driver’ s lane change intention preliminary forecast, take the output of BP neural network as the input of Bayesian filters, and then amendments the results of BP neural network. Using real vehicle lane changing data training and testing the model. The results show that prediction accuracy rate of BP neural network and Bayes-ian filters reaches 91. 38%. The forecast accuracy increased by 6 percentage points compare to single BP neural network and has better versatility.
作者 牛世峰 黎莉
出处 《科学技术与工程》 北大核心 2016年第14期212-216,共5页 Science Technology and Engineering
基金 国家自然科学基金(61374196 61473046) 教育部长江学者与创新团队支持计划项目(IRT1286) 国家科技支撑计划项目(2014BAG01B05) 交通运输部应用基础研究项目(2013319812150)资助
关键词 换道意图 BP神经网络 贝叶斯滤波器 预测 修正 lane change intent BP neural network Bayesian filter forecast correction
  • 相关文献

参考文献12

  • 1Zheng J, Suzuki K, Fujita M. Predicting driver’s lane-changing de-cisions using a neural network model. Simulation Modelling Practiceand Theory, 2014;42: 73-83.
  • 2Houenou A, Bonnifait P, Cherfaoui V,et al. Vehicle trajectory pre-diction based on motion model and maneuver recognition. IntelligentRobots and Systems ( IROS) , 2013 IEEE/RSJ International Confer-ence on. IEEE, 2013 : 4363-4369.
  • 3Hou Y, Edara P, Sun C. Modeling mandatory lane changing usingBayes classifier and decision trees. IEEE Transactions on IntelligentTransportation Systems, 2014;15(2) : 647-655.
  • 4袁伟,付锐,郭应时,彭金栓,马勇.基于视觉特性的驾驶人换道意图识别[J].中国公路学报,2013,26(4):132-138. 被引量:29
  • 5孙纯.基于驾驶人视觉特性的换道意图识别.西安:长安大学,2012:26-45.
  • 6袁伟,付锐,吴付威,彭金栓.车道保持与换道意图阶段眼动行为差异性分析[J].长安大学学报(自然科学版),2013,33(4):86-91. 被引量:4
  • 7彭金栓.基于视觉特性弓车辆相对运动的驾驶人换道意图识別方法.西安:长安大学,2012:11-13.
  • 8李亚秋,吴超仲,马晓凤,黄珍,张晖.基于EKF学习方法的BP神经网络汽车换道意图识别模型研究[J].武汉理工大学学报(交通科学与工程版),2013,37(4):843-847. 被引量:19
  • 9侯海晶.高速公路驾驶人换道意图识别方法研究.长春:吉林大学,2013: 4-5.
  • 10张良力.面向安全预警的机动车驾驶意图识别方法研究.武汉:武汉理工大学,2011: 10-13.

二级参考文献60

  • 1张友民,戴冠中,张洪才,卢京潮.一种前馈神经网络的卡尔曼滤波学习方法[J].信息与控制,1994,23(2):113-118. 被引量:17
  • 2劳丽,吴效明,朱学峰.模糊集理论在图像分割中的应用综述[J].中国体视学与图像分析,2006,11(3):200-205. 被引量:20
  • 3杨治明,王晓蓉,彭军,陈应祖.BP人工神经网络在图像分割中的应用[J].计算机科学,2007,34(3):234-236. 被引量:46
  • 4蒋小标,汤光明,徐蕾.基于模糊理论的图像分割方法[J].计算机工程与设计,2007,28(16):3940-3942. 被引量:4
  • 5LIU A. What the Driver's Eye Tells the Car's Brain [M]//UNDERWOOD G. Eye Guidance in Reading and Scene Perception. Oxford: Elsevier Science, 1998.. 431-452.
  • 6KUGE N,YAMAMURA T,SHIMOYAMA O,et al. A Driver Behavior Recognition Method Based on a Driver Model Framework [J]. SAE Paper 2000-01- 0349.
  • 7XUAN Y,COIFMAN B. Lane Change Maneuver De- tection from Probe Vehicle DGPS Data[C]//IEEE. Proceedings of the IEEE ITSC 2006. New York: IEEE, 2006 : 624-629. S.
  • 8ALVUCCI D, LIU A. The Time Course of a Lane Change~ Driver Control and Eye-movement Behavior [J]. Transportation Research Part F,2002,5(2) .. 123- 132.
  • 9OLSEN E C B, LEE S E, WIERWILLE W W. Eye Glance Behavior During Lane Changes and Straight- ahead Driving[J]. Transportation Research Record, 2005,1937:44-50.
  • 10HENNING M, GEORGEON O, KREMS J. The Quality of Behavioral and Environmental Indicators Used to Infer the Intention to Change Lanes[C]// TRB. Proceedings of the 4th International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design. Stevenson.. University of Washington, 2007 : 231-237.

共引文献52

同被引文献21

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部