摘要
为提高车辆在换道过程中的行车安全性。提出一种基于BP神经网络与贝叶斯滤波器的换道意图预测方法,通过车道线传感器、方向盘转角传感器和车身CAN总线采集相关表征参数,将其作为BP神经网络输入数据,对驾驶人换道意图进行初步预测,BP神经网络输出结果作为贝叶斯滤波器输入数据,对BP神经网络预测结果作进一步修正。对模型利用真实换道数据进行训练和检测,结果表明此模型的预测准确率达到91.38%,相较于单一的BP神经网络模型,预测准确率提高了6%,并且具有更强的通用性。
In order to improve safety during lane change, we proposed lane change intent prediction method based on neural networks and Bayesian filters. The method uses the lane line sensor, steering wheel angle sensor and in-vehicle CAN bus acquisition characterization parameters. The above acquisition parameters as the neural network input data, driver’ s lane change intention preliminary forecast, take the output of BP neural network as the input of Bayesian filters, and then amendments the results of BP neural network. Using real vehicle lane changing data training and testing the model. The results show that prediction accuracy rate of BP neural network and Bayes-ian filters reaches 91. 38%. The forecast accuracy increased by 6 percentage points compare to single BP neural network and has better versatility.
出处
《科学技术与工程》
北大核心
2016年第14期212-216,共5页
Science Technology and Engineering
基金
国家自然科学基金(61374196
61473046)
教育部长江学者与创新团队支持计划项目(IRT1286)
国家科技支撑计划项目(2014BAG01B05)
交通运输部应用基础研究项目(2013319812150)资助
关键词
换道意图
BP神经网络
贝叶斯滤波器
预测
修正
lane change intent
BP neural network
Bayesian filter
forecast correction