期刊文献+

基于位置的社交主题推荐模型

Social Theme Recommendation Model Based on Location
下载PDF
导出
摘要 针对社交网络以及社交用户关注主题,分析用户所在位置,在社交网络的基础上提出主题推荐模型即location-themesocial model(LTS M odel).文章主要从三个方面进行了分析,首先对主题进行分类,运用余弦相似性算法构建向量空间主题模型.其次,在MapReduce框架下根据位置快速构建R*-tree索引,建立空间模型,在此基础上找到基于位置和主题的社交网络模型.最后,使用标准数据集对算法进行测试,并根据准确率、召回率和F1值对其效果进行评价.R*-tree索引算法采用抽样方法快速确定空间划分函数,保证了数据对象均匀地划分到各个分区.余弦相似性算法能够快速准确地找到相似主题,并且敏感识别度较强.实验证明基于LTS Model的位置—主题推荐算法(LTRA)能够快速找到满足用户兴趣的主题并进行推荐. Location-theme-social model is put forward by considering the social network and analyzing where the user is and what themes they focus on. The thesis mainly analyzes it from three parts,firstly ,categorizes the topic of an input and constructs vector spa- tial theme model by using cosine similarity. Secondly, creates R * -tree index based on location under the framework of MapReduce and constructs spatial model, so that to find the social network based on location and theme. Lastly, tests the effects of the algorithm with standard data sets which is evaluated by precision, recall and F1-Score. R * -tree index constructed with the method of sampling could quickly determine the space partition function and ensure that the object evenly divided the space to the various partitions. Cosine similarity could find similar themes quickly and accurately. It has a strong sensitive recognition. Experiment has indicated that the locationtheme recommendation algorithm based on LTS Model could find the interested themes for users and recommend them.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第6期1168-1173,共6页 Journal of Chinese Computer Systems
基金 上海智能家居大规模物联共性技术工程中心项目(GCZX14014)资助 沪江基金研究基地专项项目(C14001)资助 国家自然科学基金项目(61003031)资助 上海市大学生创新创业训练计划项目(SH2014034)资助
关键词 LTS MODEL MAPREDUCE R*-tree索引 LTRA 主题推荐 LTS Model MapReduce R * -tree Index LTRA theme recommendation
  • 相关文献

参考文献14

  • 1Yang Wei-qing. Mobile intemet detonated future [ J ]. Market Out- look( First Half) ,2014, ( 5 ) : 109-112.
  • 2Zhu Rong-xin. Research on the model of latnt user and location rec- ommendation in location-based social networks[ D]. Nanjing: Nan- jing University of Posts and Telecommunications, February ,2013.
  • 3Deng Dong-po, Chuang T, Lemmens R. Conceptualization of place via spatial clustering and co-occurrence analysis[ C ]. Proceedings of ACM SIGSPATIAL International Workshop on Location Based Social Networks ,New York:ACM Press ,2009:49-56.
  • 4Silva A, Martins B. Tag recommendation for georeferenced photos [ C ]. Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location Based Social Networks , New York : ACMPress ,2011:57-64.
  • 5Xiao X, Zheng Y, Luo Q, et al. Finding similar users using catego- ry-based location history [ C ]. Proceedings of the 18th SIGSPA- TIAL International Conference on Advances in Geographic Infor- mation Systems, GIS'I 0, ACM, New York, USA,2010:442 -445.
  • 6Xiao X, Zheng Y, Luo Q, et al. Inferring social ties between users with human location history [ J ]. Journal of Ambient Intelligence and Humanized Computing,2014,5( 1 ) :3-19.
  • 7Li Q, Zheng Y, Xie X, et al. Mining user similarity based on loca- tion history[ C]. Proceedings of the 16th ACM SIGSPATIAL Inter- national Conference on Advances in Geographic Information Sys- tems, GIS'08, ACM, New York, USA, 2008,34 : 1-34,10.
  • 8Hung C C, Chang C W, Peng W C. Mining trajectory profiles for discovering user communities[ C]. Proceedings of the 2009 Interna- tional Workshop on Location Based Social Network, LBSN'09, ACM,New York,USA,2009 : 1-8.
  • 9Eric Hsueh Chan Lu and Chih Yuan Lin, Trip-mine:an efficient trip planning approach with travel time constraints[ C ]. 12th IEEE Inter- national Conference on Mobile Data Management,2011:152-161.
  • 10Ye Mao, Shou Dong, Lee W, et al. On the semantic annotation of places in location-based social networks[ C ]. Proceedings of KDD. New York:ACM Press,2011:520-528.

二级参考文献38

  • 1Apostolos P, Yannis M. Parallel bulk loading of spatial data [J]. Parallel Computing, 2003, 29: 1419-1444.
  • 2Roussopoulos N, Leiiker D. Direct spatial search on pictorial databases using packed R-trees [C]//Proceedings of 1985 ACM SIGMOD Conference. Austin: ACM Press, 1985:17- 31.
  • 3Kamel I, Faloutsos C. On packing R-trees [C]//Proceedings of the 2nd CIKM Conference. Washington: ACM press, 1993: 490-499.
  • 4Leutenegger S T, Lopez M A, Edgington J. STR: A simple and efficient algorithm for R-tree packing [C]//Proceedings of the 13th IEEE ICDE Conference. Birmingham: IEEE Computer Society Press, 1997: 497-506.
  • 5Leutenegger S T, Nicol D M. Efficient bulk-loading of grid files [J]. IEEE Transactions on Knowledge and Data Engineering, 1997, 9: 410-420.
  • 6Ciaccia P, Patella M. Bulk-loading the M-tree [C]//Proceedings of the 9th Australian Database Conference. Perth: Springer-Verlag, 1998: 15-26.
  • 7van den Bercken J, Seeger B. A generic approach to bulk loading multidimensional index structures [C]//Proceedings of the 23rd VLDB Conference. Athens: Springer-Verlag, 1997 406-415.
  • 8Arge L, Hinrichs K H. Efficient bulk operations on dynamic R-trees [J]. Algorithmiea, 2002, 1: 104-128.
  • 9Berchtold S, Bohm C. Improving the query performance of high-dimensional index structures by bulk load operations [C]//Proceedings of the 6th EDBT. Valencia: Springer-Verlag, 1998: 216-230.
  • 10van den Bercken J, Seeger B. An evaluation of generic bulk-loading techniques [C]//Proceedings of the 27th VLDB Conference. Rome: Springer-Verlag, 2001: 461-470.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部